
Enlighten Dissertations

http://endeavour.gla.ac.uk/

deposit@lib.gla.ac.uk

Liu, Zhongyi (2017) Estimating parameters of partial differential

equations with gradient matching. [MSc]

http://endeavour.gla.ac.uk/204/

Copyright and moral rights for this work are retained by the author(s)

A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author(s)

The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the

author, title, institution and date must be given

http://endeavour.gla.ac.uk/
http://endeavour.gla.ac.uk/204/

Estimating Parameters of Partial Differential Equations with Gradient Matching 1

Estimating Parameters of Partial Differential

Equations with Gradient Matching

Zhongyi Liu

GUID: 2283171

Supervisors:

Benn Macdonald

Dirk Husmeier

Diana Giurghita

Estimating Parameters of Partial Differential Equations with Gradient Matching 2

Contents

Abstract 3

1. Introduction 4

2. Methodology 6

2.1 Example PDE models 6

2.2 PDE models of cell movement 7

2.3 Gaussian process 10

2.4 Gradient matching 13

3. Data 15

3.1 Diffusion and advection-diffusion equation 15

3.2 Cell movement data 15

4. Results 16

4.1 Gradient matching with closed form solution 16

4.2 Gradient matching with numerically calculating the gradients 16

4.3 Gradient matching with Gaussian processes 19

4.4 Gradient matching and model selection of cell movement data 30

5. Discussion 39

Estimating Parameters of Partial Differential Equations with Gradient Matching 3

Abstract

Parameter inference in partial differential equations (PDEs) is a problem that many

researchers are interested in. The conventional methods suffer from severe

computational costs because these method require to solve the PDEs repeatedly by

numerical integration. The concept of gradient matching have been proposed in order

to reduce the computational complexity, which consists of two steps. First, the data are

interpolated with certain smoothing methods. Then, the partial derivatives of the

interpolants are calculated and the parameters are optimized to minimize the distance

(measured by loss functions) between partial derivatives of interpolants and the PDE

systems. In this article, we first studied the parameter inference accuracy of gradient

matching based on two simple PDE models. Then the method of gradient matching was

used to infer the parameters of PDE models describing cell movement and select the

most appropriate model.

Keywords: partial differential equations, gradient matching, Gaussian processes, cell

movement, parameter inference

Estimating Parameters of Partial Differential Equations with Gradient Matching 4

1. Introduction

Partial differential equations (PDEs) are equations that involve multi-variable functions

and their partial derivatives. For the function 1(,...,)nu x x , a PDE is an equation of the

form

2

1

1 1 1

,..., , , ,..., , ,...; 0n

n

u u u
f x x u

x x x x

 , (1,1)

where is the vector of parameters of the PDE.

A wide variety of phenomena, including heat, sound, fluid dynamics or collective

movements in cell systems can be described via PDE models. Like other statistical

models, the performance of PDE models depend on their parameters. For complex

models, most of the parameters cannot be directly measured. Hence, many studies have

been focused on inferring the parameters of different partial differential equation (PDE)

or ordinary differential equation (ODE) systems using different methods.

In principle, the ordinary techniques of statistical inference can also be used to solve this

problem. At first, we can calculate the difference between the real data values and the

fitted values calculated from the models and at the parameter levels we choose to get the

likelihood function of the data. For a particular parameter set, the PDEs are solved and

the solutions are compared to the data. Then, the parameters can be optimized to

maximize the likelihood, or be sampled from a corresponding posterior distribution.

Although inference in this way is possible, in practice it suffers from the problem of large

computational costs. Complex PDE models usually do not have closed form solutions, so

to do the inference, the PDEs must be solved repeatedly using numerical methods, which

results in a large computational burden. Besides, the likelihood functions of the

parameters are usually not unimodal, but with multiple local optima, so the optimization

is also a challenging task, and for Bayesian inference, the sampling procedure would be

difficult to converge [10].

To reduce the computational complexity, the method of gradient matching has been

Estimating Parameters of Partial Differential Equations with Gradient Matching 5

adopted by different authors [6][9-11], mainly on ODE models. The same method can be

applied on PDE models as well. The idea of gradient matching mainly consists of the

following two steps. First there is a smoothing step, where the data (usually noisy) are

interpolated using a certain smoothing method. In a second step, the partial derivatives

of the interpolants are calculated, and the parameters of the PDEs are optimized to

minimize a certain error metric describing the partial derivatives calculated from the

interpolants and the partial derivatives from the PDEs. In this way, we do not need to

numerically solve the PDEs to get fitted function values. Instead, we can directly compare

the partial derivatives to the PDE models to get estimates of parameters. In this way, the

computational costs can be greatly reduced. However, the accuracy of the parameter

inference requires further investigation.

In the first part of this study, two PDE models with existing closed form solutions are

investigated. Simulated data are produced from the closed form solutions with i.i.d.

Gaussian noise being added to simulate to real cases that we cannot avoid all the noises.

The data are then smoothed using Gaussian process regression. The derivatives of the

interpolants are calculated and the parameters are inferred with the method of gradient

matching. The results show that with properly selected covariance functions and hyper-

parameters, the parameter estimation using noise-free simulated data can give results

which are very close to the true values of parameters we choose in advance. When the

noise level increases, the performance becomes poorer, but the medians and IQRs of the

point estimates are still within 30% of the true values, showing that the gradient

matching method provides a decent approximation to the conventional procedure of

parameter estimation of PDE models.

We then use gradient matching method to infer the parameters of several PDE models

describing directional cell movements. After estimating the parameters, the likelihood

of and model selection criteria are calculated to find the most appropriate model.

Among all the three candidate models, the model which describes the underlying

concentration of certain attractant to cells as a modified sigmoidal function gives the

best explanation of the data.

Estimating Parameters of Partial Differential Equations with Gradient Matching 6

At the end of the paper, further discussions are made in regard to related results from

other studies, possible future works and other concerning issues.

2. Methodology

2.1 Example PDE models

Before moving on to the models which describe the cell movement, it is preferable to give

a benchmark on the gradient matching method with some simpler models to see how

the method performs. It would be good if the test models we choose have their closed

form solutions so that we can generate simulated data from them multiple times with

little effort. Guided by this idea, we choose the diffusion equation and the advection-

diffusion equation as our start point of the project. Besides, the cell movement models

can be regarded as generalisations of these two models so understanding the nature of

these two models is critical to our following analyses.

2.1.1 The diffusion model

In physics, the diffusion equation can be used to describe the flux of a substance at a

system where there is no mean flow and only the diffusion caused by different

concentration across the system. To illustrate, we can imagine dripping a drop of ink into

still water, and diffusion equation describes the movement of the color molecules. The

equation can be written as:

2

2

(,) (,)c x t c x t
D

t x

 , (2.1)

where (,)c x t is the concentration of the diffusing substance at location x and time t

and 0D is the diffusion coefficient. More generally, D could be a function of x

and t and the location x could be multi-dimensional. To reduce the complexity and

to get a closed form solution, we only consider this simplest case. From Atkins (1987),

the closed form solution of (2.1) is:

Estimating Parameters of Partial Differential Equations with Gradient Matching 7

2

(,) exp
44

M x
c x t

DtDt

 . (2.2)

2.1.2 The advection-diffusion equation

The advection-diffusion equation models the flux of a substance at a system where the

fluid is moving in a certain direction in addition to the diffusion. Again, we can imagine

dripping ink into water, but this time with the water flowing to a certain direction with

velocity u .The one-dimensional advection-diffusion equation is written as

2

2

(,) (,) (,)c x t c x t c x t
u D

t x x

 , (2.3)

where the three terms representing the local concentration change with respect to time,

the mean flow of the substance, and the effect of diffusion.

From Atkins (1987), the closed form solution of equation (2.3) is:

2()
(,) exp

44

M x ut
c x t

DtDt

 . (2.4)

2.2 PDE models of cell movement

From Ferguson et al. (2016), models used to measure cell movement in this study are all

generalisations of one-dimensional advection-diffusion-reaction PDEs of the form:

(,) (,)
{ (,) (,)} { () } (,)C

C x t C x t
a x t C x t D t C x t

t x x x

 . (2.5)

where t is time, x is space and (,)C x t is the cell density. The advection coefficient

(,)a x t describes the velocity of the directional movement towards higher or lower x ,

indicated by positive or negative coefficients, respectively. The diffusion coefficient

() 0CD t describes the rate of the random movement of cells from high-density area to

low-density area, and the reaction term (,)C x t describes the exponential growth

process of cells at rate 0 .

Estimating Parameters of Partial Differential Equations with Gradient Matching 8

In this study, we focused on cell movement data observed in a small time and space

region. As a result, the increase in cell population caused by cell division is non-existent,

so is set to be zero.

Different advection coefficients were investigated in this study. Each advection

coefficient represents a different hypothesis for the mechanism of cell movement. Our

constant advection model assumes that the driver of the directional cell movement is the

same across space and time, i.e.:

(,)a x t a , (2.6)

Another model we are interested in is the sigmoidal attractant model, where the

advection coefficient is of the form:

(,)
(,) ()

A x t
a x t a t

x

 , (2.7)

where (,)A x t is the concentration of a chemical attractant and is of the form

(,)
1 (())

A x t
exp x t

 . (2.8)

Its spatial gradient is of the form

2

(,) exp(())

{1 exp(())}

A x t x t

x x t

 , (2.9)

where the parameters , and can be interpreted as the amplitude, steepness and

velocity of the resource concentration, respectively. An illustration of the meaning of the

parameters is shown in Figure 1.

The underlying assumption of the sigmoidal attractant model is that initially, the

chemical that attracts cells is uniformly distributed across the space. Afterwards, the cells

consume the attractant at the location they occupy. Thus, the concentration of the

attractant decreases where the cell concentration is high. The effect is named local

depletion. After the local attractants are consumed, cells then begin to move

Estimating Parameters of Partial Differential Equations with Gradient Matching 9

directionally to locations where there were no or fewer cells before, and that is the

motivation of directed cell movement. As a result, the concentration of attractant at

locations where the cells newly arrived will begin to fall as well. Meanwhile, the attractant

concentration behind the front cells gets very low due to local depletion causing the cells

remaining at those locations to display random movement. Figure 2 gives an intuitive

illustration of this process.

Figure 1. The illustration of the meanings of parameters in the sigmoidal attractant model. Parameter

 represents the amplitude, which controls the maximum of the attractant concentration. Parameter

 represents the steepness, which controls how rapidly the attractant concentration changes w.r.t.

changes of position. And parameter represents the velocity, which measures how fast the S-shaped

structure of the function moves as time goes.

Estimating Parameters of Partial Differential Equations with Gradient Matching 10

Figure 2. An intuitive illustration of the sigmoidal attractant model, where the y-axis is the

concentration of the attractant, and the x-axis is the space. The coloured circles represent the clusters of

cells. At first, the distribution of cells was unimodal. Then the cells close to the high attractant

concentration area (represented by blue circle) began their directional movement towards the high

concentration area. After reaching these area, they consumed the attractant in their new position and

continued to move directionally. Meanwhile, other cells (represented by red circle) stayed at their initial

positions and moved randomly.

2.3 Gaussian process

2.3.1 Gaussian process regression

In this study, Gaussian process regression is used to interpolant the data. We assume that

the noisy observation (,) (,) (,)y x t f x t x t consists of an underlying Gaussian process

(,)f x t and i.i.d. Gaussian noise 2(,) ~ (0,)x t N , where x represents space and t

represents time. A Gaussian process is a collection of random variables, any finite

Estimating Parameters of Partial Differential Equations with Gradient Matching 11

number of which have a joint Gaussian distribution. From Rasmussen (2006), a Gaussian

process is specified by its mean function ()m x and covariance function (, ')k x x , written

as:

(,) ~ ((,), ((,), (', ')))f x t GP m x t k x t x t . (2.10)

For simplicity, the mean function is usually set to be zero. In general, the covariance

functions represent some kind of distance or similarity between the two points (,)x t

and (', ')x t . There are different choices of covariance functions, one of which is the

squared exponential kernel:

2 2
2 1 2 1 2

1 1 2 2

1 2

() ()
((,), (,)) exp

2 2
f

x x t t
k x t x t

l l

. (2.11)

As equation (2.10) shows, the covariance function is controlled by its hyper-parameters,

represented by vector .For the squared exponential kernel, 1 2[, ,]T

f l l . After

observing the data, we can estimate the hyper-parameters of the kernel using maximum-

likelihood estimation with gradient-based optimization algorithms. If we use y to

represent the vector of observed noisy data, f to represent the latent function values

from the Gaussian process [equation (2.9)], and for a set of i.i.d. Gaussian noise, then

the hyper-parameters of the GP can be optimized as follows. Since

2, ~ (0,)| N y f I , (2.12)

~ (0,), ((,), (,))ij i i j jN K K k x t x tf | where (2.13)

the likelihood can be calculated from integration

() (,) ()p p | p d y | y f f | f (2.14).

Equation (2.14) is the convolution of two Gaussian densities [15] so the integral can be

simplified to

Estimating Parameters of Partial Differential Equations with Gradient Matching 12

2() (0,)p N K y | I . (2.15)

So the maximum likelihood estimate of hyper-parameters can be written as

2 1 21 1ˆ arg max log(()) arg max () log
2 2

Tp K K

 y | y I y I . (2.16)

After inferring the hyper-parameters, the predictions on new data points can be made by

first writing down the joint distribution of the observed target values and the function

values we want to predict at the test points:

2 *

* * * *

(,) , (,)
~ 0,

(,) , (,)

K X X K X X
N

K X X K X X

y I

f
. (2.17)

Then the corresponding conditional predictive distribution is

* * 2 1 * * * 2 1 *| ~ ((,)((,)) , (,) (,)((,)) (,))N K X X K X X K X X K X X K X X K X X f y I y I

(2.18).

2.3.2 Logistic Gaussian process

Logistic Gaussian process is a generalization of Gaussian process described previously.

For ordinary Gaussian process regression, the predicted value at a new point of interest

follows Gaussian distribution of the form shown by equation (2.18), and thus the possible

range of predicted value is (,) . However, in this cell movement case, what we are

interested in is the cell density or the probability density of the cell (which can be

calculated by dividing the cell density by the sum of celss) at certain time point and

certain location. A probability density function, by its definition, should be non-negative

and integrate to 1 on the whole space. Therefore, the method of logistic Gaussian process

is adopted to transform the ordinary Gaussian process to valid probability densities.

From Riihimaki & Vehtari (2013), the logistic density transform is of the form:

exp(())
()

exp(())

f
p

f d

x
x

s s
, (2.19)

Estimating Parameters of Partial Differential Equations with Gradient Matching 13

where is the finite region that the unknown distribution is in, ()f x is an

unconstrained latent function, and in logistic Gaussian process, a GP prior is put on

()f x ,

() ~ (0, ())f GP kx x, x' , (2.20)

where ()k x, x' is the covariance function. Further mathematical details of logistic

Gaussian process are discussed in Riihimaki & Vehtari (2013).

2.4 Gradient matching

After the data is interpolated, we can move on to the next step of calculating the gradients

of the interpolant. For Gaussian processes, one of the advantages is that the distribution

of the gradients can be derived analytically if the kernel is differentiable, and the

derivative of a GP is also a GP. From Rasmussen (2006), the covariance function between

data points and partial derivatives and the covariance function of different partial

derivatives can be written as:

(,) (,)
cov , , cov ,

j i j j i ji
i

dj dj di ej di ej

f k f kf
f

x x x x x x

x x x x
. (2.21)

As such, the predictive distribution of the partial derivatives is of the form:

1 1

~ (,), where

'() , '' '() (') , where

' cov , , '' cov ,

d d

d

T

d d

ji i
ij j ij

di di dj

N m K
x

m K K K K K K K

ff f
K f K

x x x

f

f (2.22)

In this study, the means of the predictive distributions are regarded as the estimate of

the partial derivatives and are used in the following gradient matching steps.

For smoothing methods whose partial derivatives cannot be derived analytically, we can

use numerical methods to get approximated values of the gradients. For a continuous

Estimating Parameters of Partial Differential Equations with Gradient Matching 14

and (at least) second-order differentiable function ()f x , from Taylor’s expansion, we can

get

2
2

2

() 1 ()
() () ...

2!

f x f x
f x a f x a a

x x

(2.23)

2
2

2

() 1 ()
() () ...

2!

f x f x
f x a f x a a

x x

(2.24)

From equation (2.23) – equation (2.24), we can get

() () ()

2

f x f x a f x a

x a

. (2.25)

From equation (2.23) + equation (2.24), we can get

2

2 2

() () () 2 ()f x f x a f x a f x

x a

. (2.26)

After the partial derivatives are calculated, we can move on to the actual gradient

matching steps. The main idea of gradient matching is that for a good interpolant of the

data, not only should the fitted values from the interpolant be close to the real data

points under certain error metrics, but the estimated partial derivatives should also be

close to the real gradients in some ways. As for PDE models, the partial derivatives follow

the equation (1.1). So we can put the fitted derivatives into the left hand side of equation

(1.1), and measure the difference between the left hand side of equation (1.1) and zero

using the following loss function

2

1

(, , ,...;) 0

()

n

i i
ii

u
f u

L
n

 x θ

x
θ . (2.27)

The estimates of parameters are then derived by

ˆ arg min ()L
θ

θ θ . (2.28)

We can find out that if the PDE in equation (1.1) is a linear one, minimizing the loss

Estimating Parameters of Partial Differential Equations with Gradient Matching 15

function in equation (2.27) is equivalent to performing a linear regression, with one of

the partial derivatives being regarded as the dependent variable and others as the

independent variables. For non-linear PDE systems, the loss function can be optimized

by a wide variety of optimization algorithms.

To check the accuracy of parameter estimation using gradient matching, we simulate

multiple datasets using the closed form solutions of diffusion and advection-diffusion

equations [equation (2.2) and (2.4)] for the same real parameter level. For each dataset,

gradient matching is conducted and point estimates of parameters are derived. Then the

point estimates from different datasets can be shown in a boxplot. Inspecting the median

and spread of the boxplot indicates the accuracy of the method.

3. Data

3.1 Diffusion and advection-diffusion equation

The test data were generated from closed form solutions [equation (2.2) and (2.4)] with

the following parameters: 2D for equation (2.2) and 2, 3D u for equation (2.4).

Multiple datasets were generated, each contained certain number of data points,

randomly generated from a certain region of time and space. Further details are

discussed in corresponding result parts. To better simulate the reality, independent and

identically-distributed Gaussian noises are added to some of the datasets, with the noise

level controlled by the signal-to-noise ratio (SNR), which is defined by

2

var()

noise

data
SNR

 . (3.1)

Further details of the simulated datasets are discussed in corresponding result parts.

3.2 Cell movement data

The cell movement data are collected from a video of a group of Dictyostelium amoebae.

The Dictyostelium cells are added to the center of a dish of agar containing uniform levels

of the chemoattractant folate across the whole dish. The cells consume the local

Estimating Parameters of Partial Differential Equations with Gradient Matching 16

attractant and create a resource gradient. The movement of cells was filmed by a

microscope. We made use of eight screen shots from the video at time t=0s, 2s, 4s,…,14s,

and for each screenshot, the locations of the cells were extracted using the ImageJ

software.

Figure 3. Screenshots from the video of cell movement. As the screenshots show, the behaviour of cells

has two different types, a proportion of cells move towards the upper side of the plots, while the rest of the

cells move randomly around the lower side.

4. Results

4.1 Gradient matching with closed form solution

If we have the closed form solution of the PDE, we can try to perform gradient matching

onto real gradients instead of the gradients of interpolants. Fro example, for the diffusion

equation (2.1), if we know that at the point 0 0(,)x t , the partial derivatives are:

2

0 0 0 02
(,) 6, (,) 3

c c
x t x t

t x

 . (4.1)

Then we can put equation (4.1) back into equation (2.1), and within a second we can solve

the equation and realize that 2D .

4.2 Gradient matching with numerically calculating the gradients

Estimating Parameters of Partial Differential Equations with Gradient Matching 17

However, it is usually impractical to get the closed form solution of a PDE or the

analytical solutions of gradients. One of the solutions is to approximate the derivatives

using numerical methods. To do this for the advection-diffusion equation, for example,

we first divide the space and time region of interest into an g gn n equidistant grid, and

we may call the parameter gn as “the size of the grid”. It can be seen that for a fixed region,

larger value of gn represents lower distance between adjacent grid points and better

resolution of the grid. After setting up the grid, we calculate the function values for each

grid points using closed form solution equation (2.4). Afterwards, the numerical

estimates of partial derivatives are calculated using equation (2.25) to (2.26) (the partial

derivatives at the points on the border of the grid cannot be calculated in this way so

these points are neglected in the following steps). Because equation (2.3) is a linear PDE,

the gradient matching can be done via linear regression. From equation (2.3), we derive

2

2

(,) (,) (,)c x t c x t c x t
u D

t x x

. (4.2)

Size of the grid gn 100 50 30 10

Estimate of u 3.01855 3.06129 3.13126 3.38269

Percentage away from real value 3u 0.62% 2.04% 4.38% 12.76%

Estimate of D 1.9828 1.93325 1.82376 0.80258

Percentage away from real value 2D -0.86% -3.34% -8.81% -59.87%

Table 1. The parameter estimation using gradient matching based on noise free data from the closed form

solution of advection-diffusion equation from a grid of space (0,2)x and time (0.3,5)t . The

result shows that as the size of the grid increases, the estimates are closer to their real values 3u and

2D .

Estimating Parameters of Partial Differential Equations with Gradient Matching 18

With partial derivatives being calculated, the parameters can be estimated by fitting a

linear model where
(,)c x t

t

is the dependent variable and

(,)c x t

x

and

2

2

(,)c x t

x

are the

independent variables.

For each size of grid gn ’s, one dataset was produced. The point estimates of parameters

from these datasets are shown in Table 1.It can be seen from the table that with more grid

points taken (i.e., narrower distance between adjacent grid points), the estimates

become closer to the real value, and even if the size of grid is not very large (30gn), the

estimates are still within 10% of the real value. However, the biggest disadvantage of

conducting gradient matching with unsmoothed data is that this method is not robust

against noise at all. To illustrate this, we add some minor noise (SNR=1000) to the data

calculated from the closed form solution. The same gradient matching steps are

conducted and the results are shown in Table 2.

Size of the grid 100 50 30 10

Estimate of u 0.4389 1.1978 1.989 2.889

Percentage away from real value 3u -85.37% -60.07% -33.70% -3.70%

Estimate of D 8.269e-06 0.00015 0.0005 0.0158

Percentage away from real value 2D -100.00% -99.99% -99.98% -99.21%

Table 2. The parameter estimation using gradient matching based on data from the closed form solution

of advection-diffusion equation from a grid of space (0,2)x and time (0.3,5)t with i.i.d.

Gaussian noise of SNR=1000 added. The result shows that with such minor noise, the results are no longer

close to real values 3u and 2D .

As Table 2 shows, with minor noise (SNR=1000) the estimates of D based on

unsmoothed data become extremely close to zero and the estimates of u become closer

Estimating Parameters of Partial Differential Equations with Gradient Matching 19

to the true value of u as the resolution becomes worse, which is counter-intuitive. Both

of the phenomena can be explained. From equation (2.26), the numerical solution of

second-order derivatives contains the numerator denominator 2a , which in this case

can be very small because a represents the distance between adjacent grid points. As a

result, the numerically calculated second-order derivatives become more sensitive to

noise and the estimated diffusion coefficients become rather close to zero because the

noise has outweigh the information. As for the advection coefficient, as it is related to

the first-order derivative calculated from equation (2.25), since the absolute noise level

does not change (i.e. the distributions of noise on the numerator of equation(2.25) do

not change), the influence of noise will become less as the distance a becomes larger.

In reality, it is hard for us to get closed form solutions for the PDEs of interest or collect

noise-free data. So we have to use some smoothing methods to interpolate the data.

4.3 Gradient matching with Gaussian processes

Using the closed form solutions in equation (2.2) and (2.4), we generated random data

points of the two PDE models and then added i.i.d. Gaussian noise to them.

Four noise levels are selected in order to test the effectiveness of Gaussian process

regression and gradient matching, and how the results will change as noise enlarges. The

noise levels are: “noise-free”, 100SNR , 30SNR and 10SNR . For each noise level,

100 independent datasets were generated. Each data set contains 600 data points,

randomly chosen from the time and space domain (0,2), (0,2)t x . Each data set was

then interpolated using Gaussian process regression with squared exponential kernel,

after which the gradients of the GP are calculated and fitted into the PDE to get point

estimates of the parameters. The estimates of parameters are collected and shown in

boxplots in Figure 4.

Estimating Parameters of Partial Differential Equations with Gradient Matching 20

Figure 4. The boxplots of point estimates of parameters of diffusion equation [(a)] and advection-

diffusion equation [(b) and (c)] using Gaussian process and gradient matching

By examining Figure 4, we can see that for both models and all the parameters, the bulks

of the distributions are biased from the real values, and as the noise level increases, the

distributions of point estimates become closer to zero and further from the real values.

This might suggest that it is harder to extract useful information from data as more noise

is included. Although the medians of the point estimates are about 50% away from the

(a)

(b) (c)

Estimating Parameters of Partial Differential Equations with Gradient Matching 21

real values of the parameters and most of the IQRs of the boxplots do not contain the

real value of parameters, the results do show a positive correlation between the inferred

parameters and real values, which encourages us to further explore the method and try

to improve its performance.

We can first do this by visual inspection. Figure 5 illustrates the closed form solution of

the diffusion equation and three fitted GPs from four datasets with different noise levels

(the datasets come from the same set of sampled (,)x t coordinates, where the only

difference is the added Gaussian noise). By inspecting these figures, we can come up with

the following hypotheses of why the method did not perform well.

Figure 5. The plot of advection-diffusion equation and three Gaussian process interpolants with different

noise levels. As the plot of the closed form solution of the PDE shows, the plot is the sharpest when t is

small, and the fitted GPs with squared exponential kernel, cannot accurately capture the sharp peak.

Besides, as the noise increases, the interpolants are less close to the original curve.

(a) (b)

(c) (d)

Estimating Parameters of Partial Differential Equations with Gradient Matching 22

1. The Gaussian process might not fit the data well. In the space and time region where

the closed form solution is relatively flat, the GP interpolants look quite similar to the

original plot. But in the region where the function is sharp, the GPs failed to capture

the high-value data points.

2. The data might be too sharp at some locations. When the value of time t is small,

there are a few data points with relatively high function values, which makes the plot

become sharp at these areas. That might increase the difficulty of interpolating.

3. Increased noise levels will worsen the results of estimation. Larger noise will make

it more difficult for us to extract useful information from the data. In the worst case, if

the noise is very large, we cannot get any useful information from the data.

Respectively, we can come up with potential solutions and see how it can improve the

result.

To get a well-fitted GP interpolant, a proper covariance function is needed. Initially, the

covariance function of the GP regression is the squared exponential kernel

2 2
2 1 2 1 2

1 1 2 2

1 2

() ()
((,), (,)) exp

2 2
f

x x t t
k x t x t

l l

 (4.3)

From Rasmussen (2006), the squared exponential kernel is a stationary covariance

function, which means that it is a function of ()x - x' and is invariant to the transforms

in the input space. However, after having a look at the plots of the closed form solutions

of the diffusion equation and advection-diffusion equation, we will find that both

processes are not stationary, and a stationary covariance function like the squared

exponential kernel may not be proper in this case. So we considered a non-stationary

covariance function, namely the neural network covariance function [also called kernel

multilayer perceptron, Rasmussen (2006) provides more details about it]. Figure 6

provides the plot of the predicted GP curve using neural network covariance function

with noise-free data simulated from the advection-diffusion equation (with parameter

u=3, D=2). At first glance, the curve of the neural network covariance function is more

Estimating Parameters of Partial Differential Equations with Gradient Matching 23

similar to the original PDE curve (Figure 5(a)) compared to the curve of squared

exponential kernel (Figure 5(b)). But if we do the same gradient matching procedure as

before using the neural network covariance function, the parameters inferred from this

Gaussian distribution is far away from the true values. To figure out the reason, we take a

deeper look at the PDE and the fitted GPs.

Figure 6. The plot of the predited mean of Gaussian process with neural network kernel, based on

simulated dataset from closed form solution of advection-diffusion equation

Figure 7 shows the cross sections of the PDE and fitted GPs at time t=1.8. As the plots

show, the original PDE curve is smooth, so is the fitted GP with squared exponential

kernel. For the neural network covariance, although the fitted data points are closer to

the real values, the curve is relatively rugged. As a result, the partial derivatives

(especially the second-order ones) calculated from the GP can be far from the real

gradients. And this will lead to the failure of gradient matching as we fit the gradients

from the GP back into the original PDE.

Estimating Parameters of Partial Differential Equations with Gradient Matching 24

Estimating Parameters of Partial Differential Equations with Gradient Matching 25

Figure 7. The plot of closed form solution of advection-diffusion equation and two fitted GP curves at

t=1.8 (upper) and the plots of corresponding partial derivatives and second-order partial derivatives w.r.t.

x (middle and lower).

Another probable reason of the unsatisfying GP fits is that we may not sample sufficient

data points from the sharp area of the function where time is low, so we do not capture

all the characteristics of the function and that may lead to unsatisfactory GP fits in this

region. To try to solve this, instead of sampling from a uniform distribution of time and

space, we try to sample more data points in the region where the value of t is small and

fewer data points where t is relatively large. However, as is shown in Figure 8, this

modification does not provide significant improvement to the results. We take a look at

one of the failed cases. As Figure 9 demonstrates, in this case, there is a data point with

extremely large function value. As a result, the GP regression with squared exponential

kernel becomes rather unstable and the gradient matching will fail.

Estimating Parameters of Partial Differential Equations with Gradient Matching 26

Figure 8. The boxplots of point estimates when more data points are simulated from the peak area (right

side of both plots) compared with data generated uniformly from the space of (0,2), (0,5)x t .

From the plots, the results are not significantly improved by sampling more points around the peak.

Estimating Parameters of Partial Differential Equations with Gradient Matching 27

Figure 9. the plot of the fitted mean of Gaussian process from one noise free dataset. We can observe a

data point with very large function values, which might be the reason that the gradient matching do not

do well in this case. To try to solve this, we consider cutting off the peak area in following steps.

After observing this phenomena, we may try a different modification of data sampling.

Instead of sampling more data points from the sharp area, we abandoned sampling from

this sharp area by cutting off the time domain. This modification is reasonable from a

practical perspective. If we look back at the closed form solutions [equation (2.2) and

(2.4)], we may find the following initial conditions underlying the closed form solutions

, 0
(, 0)

0 , elsewhere

x
c x t

 (4.4)

Which is not realistic in practice since we cannot have infinite concentration at one

position and zero concentration at any other positions. If we cut off some time domain

where t is small (say, 0(0,)t t), we can regard the new process as a PDE start at 0t t

Estimating Parameters of Partial Differential Equations with Gradient Matching 28

with initial condition 0(,)c x t , which is continuous and differentiable, and this might be

more close to what happened in real world. Besides, as the sharpest part of the function

is cut off, it may be more appropriate to use the squared exponential kernel. Although

the real process is never stationary, it looks close to stationary in this restricted area,

which makes the use of squared exponential kernel appropriate. The boxplots of the

point estimates from datasets drawn from different time and space regions are shown in

Figure 10.

After inspecting Figure 10, we may conclude that after choosing proper time and space

region, the estimates of parameters gathered from gradient matching can be very close

to the real values in the noise-free scenario. As the noise gets larger, the estimates become

more biased and the variances of the estimates become larger, but the percentages that

the medians of the point estimates are away from the real values are no more than 15%

even when the noise level is high (SNR=10), and the IQRs of the boxplots are much

narrower compared with the results in Figure 4. In general, the method of gradient

matching with Gaussian process performs reasonably in estimating the parameters of

diffusion equation and advection-diffusion equation, so we can move on to the next step,

and try to estimate the parameters of PDE models describe the cell movement.

Estimating Parameters of Partial Differential Equations with Gradient Matching 29

Figure 10. The boxplots of point estimates from gradient matching of parameters in the advection-

diffusion equation using GP regression and squared exponential kernel. On both plots, the four boxplots

on the left are the boxplots of point estimates inferred from data simulated from the region

(0,2), (0,2)x t . The boxplots on the middle are from data simulated from the region

(0,2), (0.1,2)x t ,where some of the peak of the function are cut off. And the four boxplots on the

right are from data simulated from the region (0,2), (0.3,2)x t ,where most of the peak of the

Estimating Parameters of Partial Differential Equations with Gradient Matching 30

function are cut off. From the boxplots, we can find out that after cutting off the peak, the accuracy of

point estimates improve a lot. When the data are noise free and the time interval is restricted, the point

estimates of parameters are distributed very closely around the true values. When the data are noisy, the

biases and spreads of the point estimates are much smaller for the constrained time interval compared

with the original time interval. But most of the IQRs of the boxplots still do not contain the true values of

parameters, showing that the noises still have large impact on the accuracy of estimation.

4.4 Gradient matching and model selection of cell movement data

The cell position data is first transformed into probability density of cell using a logistic

Gaussian process with three different covariance functions, namely the squared

exponential kernel, the Matérn covariance function with 3 / 2 (referred to as

“Matérn32” in the following sections) and the Matérn covariance function with 5 / 2

(referred to as “Matérn52” in the following sections). The Matérn covariance function is

of the form

1
2 2

() 2 2
()

d d
C d K

 , (4.5)

Where () is the gamma function, K is the modified Bessel function of the second

kind, and d are non-negative hyper-parameters.

For 3 / 2 ,

2

3/2

3 3
() 1 exp

d d
C d

 . (4.6)

For 5 / 2 ,

2

2

5/2 2

5 5 5
() 1 exp

3

d d d
C d

. (4.7)

The relationship between the probability density of cell (represented by (,)p x t) and the

Estimating Parameters of Partial Differential Equations with Gradient Matching 31

cell density (,)C x t in equation (2.5) can be represented as

(,)

(,)
()

C x t
p x t

n t
 , (4.8)

where ()n t is a function of time describe the total number of cells on the space. In this

study, the data were collected in a short time interval and an isolated space, so we can

assume that no cells died, were reproduced or moved in and out of the region during

the time interval. Thus the function ()n t can be regarded as a constant. As a result, the

PDE models for cell density (,)C x t also hold for the probability density (,)p x t .

To calculate the logistic GP density, the lgpdens() function from the Matlab package

“gpstuff” is called [14]. The space and time domain is separated into grids, and for each

grid, the probability density at the center of the grid is estimated via a logistic Gaussian

process. After inspecting the data, the grid points are set to be: 400 equidistant points

from -100 to 900 for x and {0,2,4,…,14} for t. Figure 11 illustrates the fitted logistic Gaussian

process density with the squared exponential kernel. As the figure shows, initially, the

cells are concentrated at around x=500. Afterwards, a large majority of cells shows a

directional movement towards the negative direction of x axis, with the remaining cells

showing some kind of random movement around the start point. After communicating

with the data collector, we realized that the data collector used an unconventional

coordinate system. To make the figure more intuitive, we perform the following

transformation on to the x coordinate

(500)new oldx x . (4.9)

The illustration of the old and new coordinate system is shown in Figure 12. In the rest of

this paper, all the x coordinates refer to the transformed ones. The logistic GP density

plots with transformed space coordinates and squared exponential kernel are shown in

Figure 13.

Estimating Parameters of Partial Differential Equations with Gradient Matching 32

Figure 11. The plot of cell density fitted by logistic Gaussian process with squared exponential kernel. As

time goes, the distribution of cells show a significant bimodality. Besides, a large proportion of cells

moves form positive x to around zero, which is caused by the unconventional x coordinate. So we decided

to modify the data to make the plots more intuitive.

Figure 12. The illustration of original (left) and modified (right) x coordinate systems. The modified

coordinate system is easier to understand as the cells start at around x=0 and move towards larger x.

Estimating Parameters of Partial Differential Equations with Gradient Matching 33

Figure 13. The logistic GP curve with modified coordinate system.

After fitting the logistic Gaussian process, the partial derivatives of the fitted densities

are calculated using numerical approximation [equation (2.25) and (2.26)] and the

parameters are optimized by minimizing corresponding loss function in equation (2.27).

The Nelder–Mead algorithm was used to optimize the loss function. For the sigmoidal

attractant model, the loss function is complex and multi-modal, so the algorithm always

falls into local optima. To solve this, we tried multiple different start points and chose

the best result from these trails as our final result. The inferred parameters for both

models are ˆˆ 19.6693, 0u D for the constant advection model and

ˆ ˆˆ7971.94, 0.01038, 27.55, 75.08ˆ 94D for the sigmoidal attractant model.

After optimizing the parameter estimation, a numerical solver of PDE (Matlab toolbox

“pdepe”) is called to get the numerical solutions of the PDE models with corresponding

estimated parameters. The initial conditions are set to be the fitted logistic GP density at

t=0 and boundary conditions are set to be zeros. Figure 14 shows the fitted PDE curves

Estimating Parameters of Partial Differential Equations with Gradient Matching 34

of the constant advection model and the sigmoidal attractant model. From the plots, we

can observe that both models captured the directional cell movement, but not the

random movement around the start point. From Figure 13 we can see that the logistic GP

interpolant derived from original data shows significant bimodality as the density has

two peaks when t is large. However, both fitted models in Figure 14 are unimodal,

although the spread of cells becomes large as time goes by in the sigmoidal attractant

model, which makes the plot a bit more reasonable than the other model.

Estimating Parameters of Partial Differential Equations with Gradient Matching 35

Figure 14. The plots of the numerically solved PDE models of constant advection coefficient [equation

(2.6)] and sigmoidal attractant [equation (2.8)]. Both plots do not capture the bimodality of the data, so

we decide to modify the sigmoidal attractant model with a “center” parameter to see if it can improve the

result

Estimating Parameters of Partial Differential Equations with Gradient Matching 36

To try to further improve the sigmoidal attractant model, we take a deeper look at the

attractant concentration and its spatial derivative [equation (2.8)]. After solving the

equation

0

(,)
0

t

A x t

x x

, (4.10)

we can see that no matter what the parameter values are, the spatial derivative
(,)A x t

x

reaches its maximum at 0x given 0t , which means that no matter how we

perform the parameter estimation, the sigmoidal attractant model is based on the

underlying assumption that given 0t , the concentration of attractant changes most

rapidly at position 0x , which is not always the case because the x coordinates are

set arbitrarily and we do not have any information about the underlying change of

concentration of attractant. Inspired by this, a new parameter , representing the

“center” of the sigmoidal function, is introduced to the sigmoidal attractant model, and

the new expression of attractant concentration can be written as:

2

(,) exp((()))

{1 exp((()))}

A x t x t

x x t

. (4.11)

We can do the same gradient matching procedure to the new model. The optimization

is conducted using the Nelder-Mead algorithm with starting value of , , being set

as the optimized parameter values of the corresponding sigmoidal attractant model

without centring and (0) 0 . The numerical solution of the PDE model with optimized

parameters is shown in Figure 15. Using the exponential squared kernel, the parameters

inferred from the model sigmoidal attractant model with center parameter are

ˆ ˆˆ ˆ5723.07, 0.01822, 31.3990, -63.0440, 3 0.03ˆ 8D .

As Figure 15 shows, the fitted curve suggests a clear bimodality similar to the original

data. To see if this new model with a center parameter outperforms other models, we

need to calculate model selection criteria to select the most appropriate model.

Estimating Parameters of Partial Differential Equations with Gradient Matching 37

Figure 15. The plot of the sigmoidal attractant model with a new “center” parameter, with parameters

being optimized using Nelder-Mead algorithm. The biggest difference of this plot is that the cell density

is bimodal.

After the models are fitted, the likelihood of each model is calculated to determine the

most appropriate model. As is stated in section 2.2, the function (,)p x t represents the

probability density of cells. So the log-likelihood can be calculated as follows.

With a certain model and covariance function, the parameters are estimated using

gradient matching. Then, for each data point (,)i ix t in the original dataset, the fitted

density ˆ (,)i ip x t is calculated by numerically solving the corresponding PDE with the

optimized parameters. Afterwards, the log-likelihood is calculated with the equation:

1

ˆlog-likelihood = log (,)
n

i i

i

p x t

 . (4.12)

After calculating the log-likelihoods, the AIC and BIC criteria are also derived using

Estimating Parameters of Partial Differential Equations with Gradient Matching 38

equation (4.13) and (4.14) for model selection,

ˆ2 2log()AIC k L (4.13)

ˆlog() 2log()BIC n k L (4.14)

where k is the number of parameters, n is the number of data points (325n in this

study) and L̂ is the maximum of likelihood function. The results are listed in Table 3.

From the AIC and BIC criteria, we can conclude that the sigmoidal attractant model with

the “center” parameter is the most appropriate one in modelling the cell movement

among all the candidates.

model
no. of

parameters
kernel log likelihood AIC BIC

constant

advection
2

sexp -3289.37 6582.746 6590.314

matern32 -3271.25 6546.493 6554.061

matern52 -3274.35 6552.708 6560.275

sigmoidal

attractant
4

sexp -3113.73 6235.46 6250.596

matern32 -3137.16 6282.314 6297.449

matern52 -3151.08 6310.164 6325.299

sigmoidal

attractant

with center

inferred

5

sexp -3014.59 6039.171(*) 6058.09(*)

matern32 -3414.66 6839.314 6858.233

matern52 -3027.23 6064.453 6083.372

Table 3. The model selection criteria of three models used in this study and three different kernels for each

model. (*)’s indicate the minimal values of both criteria. From the table both AIC and BIC criteria suggest

that the sigmoidal attractant model with a “center” parameter inferred with the covariance function of

logistic Gaussian process being the squared exponential kernel is the most appropriate model among all

the candidates.

Estimating Parameters of Partial Differential Equations with Gradient Matching 39

5. Discussion

In this study, we have mainly inspected the method of gradient matching in estimating

the parameters of partial differential equations. The statistical methods of Gaussian

process and logistic Gaussian process are used to smooth the data and derive the partial

derivatives. Afterwards the point estimates of PDEs are derived by minimizing the loss

function. For the simulated datasets, the point estimates are compared with the real

values of parameters, and for the cell movement dataset, the PDEs are numerically solved

with the estimated parameters. The AIC and BIC criteria for different PDE models are

calculated to select the most appropriate model to describe the dataset. Due to the time

limitation, there are many questions that remain unsolved and many improvements that

can be made in this study and here is a brief discussion of them.

Since the main purpose of introducing gradient matching is to reduce computational

complexity, we will first focus on the computational cost of the gradient matching

method. Since we do not use Bayesian inference or MCMC sampling, the main source of

the computational cost comes from the fitting of the Gaussian processes, the complexity

of which is asymptotically 3()O N , where N is the number of data points, and for N

no more than 1000, the hyper-parameters of GPs can be inferred by maximum-likelihood

estimation within a few seconds using a personal laptop. So the gradient matching

method does reduce the computational cost to a great extent. Besides, with properly

selected covariance function and region of space and time, the gradient matching

method can give point estimates very close to real values using noise-free simulated data.

But for data subject to noise, the IQRs of the boxplots parameter estimation do not

always contain the real value, which means that this method may not be robust with

respect to noise.

One of the disadvantage of the gradient matching procedure used in this study, as stated

in Dondelinger et al. (2013), comes from the two-step structure of the method. As we

showed in section 2, the hyper-parameters of the GPs we are trying to fit are inferred

based on the data alone, without receiving any feedbacks from the partial derivatives,

Estimating Parameters of Partial Differential Equations with Gradient Matching 40

which makes the results of the parameter inference highly dependent on the quality of

the GPs. An example is the attempt to fit the simulated data into a GP with neural

network covariance function made in section 4.2. In that case, the predicted mean value

from the GP is close to the original data, but the partial derivatives of the GP are not close

to the partial derivatives of the real function (see Figure 7). Because of the lack of the

feedback, we cannot detect this problem until results that are far away from the true

values are made with the inferred hyper-parameters.

A better approach of regularizing the interpolants by the differential equations

themselves is first suggested in Ramsay et al. (2007). Based on the approach, Dondelinger

et al. (2013) developed the method of adaptive gradient matching based on ODE models

using non-parametric Bayesian approach and Gaussian process. In their study, both the

hyper-parameters of the GP and the ODE parameters can be jointly inferred from the

joint posterior distribution. The method is called “adaptive” because the GP is adapted

based on the information feedback from the differential equation systems. As the

authors stated, this method can significantly improve the robustness with respect to

noise. Due to the limited time, we do not perform the Bayesian inference in this study,

but in future studies, we can impose the method of adaptive gradient matching on PDE

models and compare with the results from this study to show if the approach works for

PDE models as well.

Because of the fact that the likelihood function is not unimodal and has multiple local

minima, the parameter optimization would become an NP-hard problem [10], and the

sampling procedure in Bayesian inference would be likely to fall in local optima and take

a long term to converge. The method of parallel tempering is proposed to tackle the

problem of local optima [3][5]. The idea is to run multiple MCMC simulations at different

levels of the likelihood in parallel. The power posterior at certain level is

()

()

() () ()(|) () (|)
j

j

j j jp y p p y

 , (5.1)

where ()j is the j-th level. When ()j is low, the posterior is close to the prior which

is usually flat, so the parameter positon from sampling can easily move across the region.

Estimating Parameters of Partial Differential Equations with Gradient Matching 41

As ()j becomes larger, the posterior becomes more rugged. At every MCMC step, two

chains of different levels of likelihood are chosen and the parameter locations are

swapped. In this way, it is easier for the parameter locations in a MCMC chain to move

from the local optimum to somewhere else, and thus makes the sampling easier to

converge. The strengths and weaknesses of parallel tempering in gradient matching with

ODE models are reviewed in [10] and in future studies, the method can also be used on

inferences of PDE models.

As for the model selection in section 4.3, from Table 3 we can see that for the constant

advection coefficient model and the sigmoidal attractant model, the AICs and BICs

calculated from different covariance functions in the logistic GP are relatively close.

However, for the sigmoidal attractant model with center parameter, the AIC and BIC for

Matérn32 kernel are large, indicating that using Matérn32 kernel to infer the parameters

of this model may not be appropriate. A possible explanation is that the Matérn32 kernel

is only first-order differentiable and mismatch might take place as we fit this kernel to a

PDE which contains second-order partial derivatives. But generally speaking, we would

recommend trying different covariance functions when doing PDE model selection with

gradient matching and hopefully this will help to find the most appropriate model and

corresponding parameters.

Due to the time limitation, only two fundamental PDE models for chemotaxis and a

modification for one of them are examined in this study. Hillen & Painter (2009)

provided an overview of past results on modelling the cell movement mechanisms using

PDE models. In the future, we can also work on estimating the parameters of these more

complicated models using gradient matching and see how the method works.

Estimating Parameters of Partial Differential Equations with Gradient Matching 42

References

1. Atkins, P. W. (1987). Physical Chemistry. Third edition. Oxford press

2. Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

3. Calderhead B., Girolami M. (2009). Estimating Bayes factors via thermodynamic

integration and population MCMC. Comput. Stat. Data Anal. 53, 4028–

4045.10.1016/j.csda.2009.07.025

4. Calderhead, B., Girolami, M., & Lawrence, N. D. (2009). Accelerating Bayesian inference

over nonlinear differential equations with Gaussian processes. In Advances in neural

information processing systems (pp. 217-224).

5. Campbell D., Steele R. (2012). Smooth functional tempering for nonlinear differential

equation models. Comput. Stat. 22, 429–443.10.1007/s11222-011-9234-3

6. Dondelinger F., Filippone M., Rogers S., Husmeier D. (2013). “ODE parameter inference

using adaptive gradient matching with Gaussian processes,” in Journal of Machine

Learning Research Workshop and Conference Proceedings (JMLR WCP): The 16th

International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 31,

216–228.

7. Ferguson, E. A., Matthiopoulos, J., Insall, R. H., & Husmeier, D. (2016). Inference of the

drivers of collective movement in two cell types: Dictyostelium and melanoma. Journal

of The Royal Society Interface, 13(123), 20160695.

8. Hillen, T., & Painter, K. J. (2009). A user’s guide to PDE models for chemotaxis. Journal

of mathematical biology, 58(1-2), 183.

9. Macdonald B., Husmeier D. (2015). “Computational inference in systems biology,”

in Bioinformatics and Biomedical Engineering: Third International Conference, IWBBIO

2015. Proceedings, Part II. Series: Lecture Notes in Computer Science (9044) eds. Ortuño

F., Rojas I., editors. (Granada: Springer;), 276–288.

Estimating Parameters of Partial Differential Equations with Gradient Matching 43

10. Macdonald, B., & Husmeier, D. (2015). Gradient Matching Methods for Computational

Inference in Mechanistic Models for Systems Biology: A Review and Comparative

Analysis. Frontiers in Bioengineering and Biotechnology, 3, 180.

http://doi.org/10.3389/fbioe.2015.00180

11. Ramsay J., Hooker G., Campbell D., Cao J. (2007). Parameter estimation for differential

equations: a generalized smoothing approach. J. R. Stat. Soc. Series B Stat.

Methodol. 69, 741–796.10.1111/j.1467-9868.2007.00610.x

12. Rasmussen C., Williams C. (2006). Gaussian Processes for Machine Learning.

Cambridge: MIT Press.

13. Riihimäki, J., & Vehtari, A. (2014). Laplace approximation for logistic Gaussian process

density estimation and regression. Bayesian analysis, 9(2), 425-448.

14. Vanhatalo, J., Riihimäki, J., Hartikainen, J., Jylänki, P., Tolvanen, V., & Vehtari, A. (2013).

GPstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning

Research, 14(Apr), 1175-1179.

15. Vinga, S. (2004). Convolution integrals of normal distribution functions.

http://doi.org/10.3389/fbioe.2015.00180

Estimating Parameters of Partial Differential Equations with Gradient Matching 44

Appendix

R code (see readme.txt for more information)

PDE_GP3.r

kernel <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

 sigma<-theta[4]

 result <- matrix(0,ncol=n,nrow=n)

 result1 <- matrix(0,ncol=n,nrow=n)

 result2 <- matrix(0,ncol=n,nrow=n)

 result1 <- distance.p(X[1,])

 result2 <- distance.p(X[2,])

 result<-sigma^2*diag(1,nrow=n) + exp(-result1/(2*l1^2)-result2/(2*l2^2))*sigma.f^2

 return(result)

}

distance.p <- function(X){

 n<-length(X)

 matrix(rep(X^2,n),nrow=n,byrow = FALSE) + matrix(rep(X^2,n),nrow=n,byrow = TRUE) -

2*matrix(X,ncol=1)%*%matrix(X,nrow=1)

}

distance.s <- function(X){

 n<-length(X)

 matrix(rep(X,n),nrow=n,byrow = FALSE) - matrix(rep(X,n),nrow=n,byrow = TRUE)

}

kernel.nf <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

 result <- matrix(0,ncol=n,nrow=n)

 result1 <- matrix(0,ncol=n,nrow=n)

 result2 <- matrix(0,ncol=n,nrow=n)

 result1 <- distance.p(X[1,])

 result2 <- distance.p(X[2,])

Estimating Parameters of Partial Differential Equations with Gradient Matching 45

 result<-exp(-result1/(2*l1^2)-result2/(2*l2^2))*sigma.f^2

 return(result)

}

cov.Yxx.Y <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

 sigma<-theta[4]

 result <- -kernel.nf(X,theta)/l1^2+kernel.nf(X,theta)*distance.p(X[1,])/l1^4

 return(result)

}

cov.Yx.Y <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

 sigma<-theta[4]

 result <- kernel.nf(X,theta) * distance.s(X[1,]) /(-l1^2)

 return(result)

}

cov.Yxx.Yxx <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

 sigma<-theta[4]

 result <- matrix(0,ncol=n,nrow=n)

 for (i in 1:n){

 for (j in 1:n){

 result[i,j] <- sigma.f^2*exp(-(X[1,i]-X[1,j])^2/(2*l1^2)-(X[2,i]-X[2,j])^2/(2*l2^2))*(3*l1^-4-

6*(X[1,i]-X[1,j])^2*l1^-6+(X[1,i]-X[1,j])^4*l1^-8)

 }

 }

 return(result)

}

cov.Yt.Y <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

Estimating Parameters of Partial Differential Equations with Gradient Matching 46

 sigma<-theta[4]

 result <- kernel.nf(X,theta) * distance.s(X[2,]) /(-l2^2)

 return(result)

}

cov.Yt.Yt <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

 sigma<-theta[4]

 result <- matrix(0,ncol=n,nrow=n)

 for (i in 1:n){

 for (j in 1:n){

 result[i,j] <- sigma.f^2*exp(-(X[1,i]-X[1,j])^2/(2*l1^2)-(X[2,i]-X[2,j])^2/(2*l2^2))*(l2^-2-

(X[2,i]-X[2,j])^2*l2^-4)

 }

 }

 return(result)

}

cov.Yxx.Yt <- function(X,theta){

 n <- ncol(X)

 sigma.f <- theta[1]

 l1 <- theta[2]

 l2 <- theta[3]

 sigma<-theta[4]

 result <- matrix(0,ncol=n,nrow=n)

 for (i in 1:n){

 for (j in 1:n){

 result[i,j] <- sigma.f^2*exp(-(X[1,i]-X[1,j])^2/(2*l1^2)-(X[2,i]-X[2,j])^2/(2*l2^2))*(-l1^-

2+(X[1,j]-X[1,i])^2*l1^-4)*(X[2,j]-X[2,i])*l2^-2

 }

 }

 return(result)

}

m1 <- function(X,theta,SC2,cgp)

 (cov.Yt.Y(X,theta))%*%SC2%*%cgp #Question: is the expression(11) in the paper correct?

K1 <- function(X,theta)

 cov.Yt.Yt(X,theta)-cov.Yt.Y(X,theta)%*%SC2%*%t(cov.Yt.Y(X,theta))

m2 <- function(X,theta,SC2,cgp)

 cov.Yxx.Y(X,theta)%*%SC2%*%cgp

K2 <- function(X,theta)

 cov.Yxx.Yxx(X,theta)-cov.Yxx.Y(X,theta)%*%SC2%*%t(cov.Yxx.Y(X,theta))

Estimating Parameters of Partial Differential Equations with Gradient Matching 47

plot(m1(X,thetahat),m2(X,thetahat))

x

x^2>2*D*t

m3 <- function(X,theta,SC2,cgp)

 (rbind(cov.Yxx.Y(X,theta),cov.Yt.Y(X,theta)))%*%SC2%*%cgp

K3 <- function(X,theta)

cbind(rbind(cov.Yxx.Yxx(X,theta),cov.Yxx.Yt(X,theta)),rbind(t(cov.Yxx.Yt(X,theta)),cov.Yt.Yt(X,

theta)))-

rbind(cov.Yxx.Y(X,theta),cov.Yt.Y(X,theta))%*%SC2%*%t(rbind(cov.Yxx.Y(X,theta),cov.Yt.Y(X,t

heta)))

A-D.r

generate.data.A_D.plural <- function(D,u,SNR,sample,type="1"){

 M <- 10

 x<-matrix(0,300,sample)

 t<-matrix(0,300,sample)

 c<-matrix(0,300,sample)

 y1<-matrix(0,300,sample)

 y2<-matrix(0,300,sample)

 y3<-matrix(0,300,sample)

 var.noise<-numeric(3)

 if (type=="1"){

 for (i in 1:sample){

 x[,i] <- runif(600,0,2)

 t[,i] <- runif(600,0.3,2)

 #X <- rbind(x,t)

 c[,i] <- M/sqrt(4*pi*D*t[,i])*exp(-(x[,i]-u*t[,i])^2/(4*D*t[,i]))

 #plot(x,t)

 var.noise <- SNR^-1*var(c[,i])

 y1[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[1]))

 y2[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[2]))

 y3[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[3]))

 }

 }

 else if (type=="2"){

 for (i in 1:sample){

 x[,i] <- runif(600,0,2)

 t[,i] <- runif(600,0.1,2)

 #X <- rbind(x,t)

 c[,i] <- M/sqrt(4*pi*D*t[,i])*exp(-(x[,i]-u*t[,i])^2/(4*D*t[,i]))

Estimating Parameters of Partial Differential Equations with Gradient Matching 48

 #plot(x,t)

 var.noise <- SNR^-1*var(c[,i])

 y1[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[1]))

 y2[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[2]))

 y3[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[3]))

 }

 }

 else if (type=="3"){

 for (i in 1:sample){

 x[,i] <- runif(300,0,2)

 t[,i] <- runif(300,0,2)

 #X <- rbind(x,t)

 c[,i] <- M/sqrt(4*pi*D*t[,i])*exp(-(x[,i]-u*t[,i])^2/(4*D*t[,i]))

 #plot(x,t)

 var.noise <- SNR^-1*var(c[,i])

 y1[,i] <- c[,i] + rnorm(300,0,sqrt(var.noise[1]))

 y2[,i] <- c[,i] + rnorm(300,0,sqrt(var.noise[2]))

 y3[,i] <- c[,i] + rnorm(300,0,sqrt(var.noise[3]))

 }

 }

 else if (type=="special"){

 x<-matrix(0,600,sample)

 t<-matrix(0,600,sample)

 c<-matrix(0,600,sample)

 y1<-matrix(0,600,sample)

 y2<-matrix(0,600,sample)

 y3<-matrix(0,600,sample)

 for (i in 1:sample){

 x[,i] <- c(runif(600,0,2))

 t[,i] <- c(runif(300,0,0.5),runif(300,0.5,2))

 #X <- rbind(x,t)

 c[,i] <- M/sqrt(4*pi*D*t[,i])*exp(-(x[,i]-u*t[,i])^2/(4*D*t[,i]))

 #plot(x,t)

 var.noise <- SNR^-1*var(c[,i])

 y1[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[1]))

 y2[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[2]))

 y3[,i] <- c[,i] + rnorm(600,0,sqrt(var.noise[3]))

 }

 }

 return(list(x=x,t=t,y1=y1,y2=y2,y3=y3,c=c))

}

Estimating Parameters of Partial Differential Equations with Gradient Matching 49

dat_1<-generate.data.A_D.plural(2,3,c(100,30,10),100,type = "1")

x<-dat_1$x;t<-dat_1$t;y1<-dat_1$y1;c<-dat_1$c;y2<-dat_1$y2;y3<-dat_1$y3

write.csv(x,"x_1.csv");write.csv(t,"t_1.csv");write.csv(y1,"y1_1.csv");write.csv(c,"c_1.csv");write.csv

(y2,"y2_1.csv");write.csv(y3,"y3_1.csv")

dat_2<-generate.data.A_D.plural(2,3,c(100,30,10),100,type = "2")

x<-dat_2$x;t<-dat_2$t;y1<-dat_2$y1;c<-dat_2$c;y2<-dat_2$y2;y3<-dat_2$y3

write.csv(x,"x_2.csv");write.csv(t,"t_2.csv");write.csv(y1,"y1_2.csv");write.csv(c,"c_2.csv");write.c

sv(y2,"y2_2.csv");write.csv(y3,"y3_2.csv")

dat_3<-generate.data.A_D.plural(2,3,c(100,30,10),100,type = "3")

x<-dat_3$x;t<-dat_3$t;y1<-dat_3$y1;c<-dat_3$c;y2<-dat_3$y2;y3<-dat_3$y3

write.csv(x,"x_3.csv");write.csv(t,"t_3.csv");write.csv(y1,"y1_3.csv");write.csv(c,"c_3.csv");write.cs

v(y2,"y2_3.csv");write.csv(y3,"y3_3.csv")

dat_sp <- generate.data.A_D.plural(2,3,c(100,30,10),100,type = "special")

x<-dat_sp$x;t<-dat_sp$t;y1<-dat_sp$y1;c<-dat_sp$c;y2<-dat_sp$y2;y3<-dat_sp$y3

write.csv(x,"x_sp.csv");write.csv(t,"t_sp.csv");write.csv(y1,"y1_sp.csv");write.csv(c,"c_sp.csv");wri

te.csv(y2,"y2_sp.csv");write.csv(y3,"y3_sp.csv")

xt1 <- seq(0,2,0.05)

xt2 <-seq(0,5,0.05)

cxt<-matrix(0,101,41)

for (i in 1:101){

 for(j in 1:41){

 cxt[i,j] <- 10/sqrt(4*pi*-2*xt2[i])*exp(-(xt1[j]-3*xt2[i])^2/(4*-2*xt2[i]))

 }

}

write.csv(cxt,"cxt2.csv",row.names = FALSE)

GM <- function(filename,noise.level,type){

 input<-read.csv(filename,header = FALSE)

 D_hat<-numeric(100)

 u_hat<-numeric(100)

 if (type=="1"){

 x<-dat_1$x;t<-dat_1$t;y1<-dat_1$y1;c<-dat_1$c;y2<-dat_1$y2;y3<-dat_1$y3

 } else if (type=="2"){

 x<-dat_2$x;t<-dat_2$t;y1<-dat_2$y1;c<-dat_2$c;y2<-dat_2$y2;y3<-dat_2$y3

 } else if (type=="3"){

 x<-dat_3$x;t<-dat_3$t;y1<-dat_3$y1;c<-dat_3$c;y2<-dat_3$y2;y3<-dat_3$y3

 } else if (type=="special"){

 x<-dat_sp$x;t<-dat_sp$t;y1<-dat_sp$y1;c<-dat_sp$c;y2<-dat_sp$y2;y3<-dat_sp$y3

Estimating Parameters of Partial Differential Equations with Gradient Matching 50

 }

 for (i in 1:100){

 print(i)

 thetahat <- as.vector(input[,i])^c(0.5,1,1,0.5)

 K2<-kernel(rbind(x[,i],t[,i]),thetahat)

 Knf <- kernel.nf(rbind(x[,i],t[,i]),thetahat)

 #if (noise.level==0)

 # SC2 <-solve(Knf)

 #else

 # SC2 <- solve(K2)

 SC2 <- solve(K2)

 if (noise.level==0)

 cgp<-c[,i]

 else if (noise.level==1)

 cgp<-Knf%*%SC2%*%y1[,i]

 else if (noise.level==2)

 cgp<-Knf%*%SC2%*%y2[,i]

 else if (noise.level==3)

 cgp<-Knf%*%SC2%*%y3[,i]

 #temp<-m3(rbind(x[,i],t[,i]),thetahat,SC2,cgp)

 cgp_t<-m1(rbind(x[,i],t[,i]),thetahat,SC2,cgp)

 cgp_x2<-m2(rbind(x[,i],t[,i]),thetahat,SC2,cgp)

 cgp_x <- cov.Yx.Y(rbind(x[,i],t[,i]),thetahat)%*%SC2%*%cgp

 D_hat[i]<-lm(cgp_t~cgp_x2+cgp_x-1)$coef[1]

 u_hat[i]<- -lm(cgp_t~cgp_x2+cgp_x-1)$coef[2]

 }

 return(cbind(D_hat,u_hat))

}

boxplot(Est_c_1)

Est_c_11 <- GM("theta_c_1.csv",0,"1")

Est_y1_11 <- GM("theta_y1_1.csv",1,"1")

Est_y2_11<- GM("theta_y2_1.csv",2,"1")

Est_y3_11 <- GM("theta_y3_1.csv",3,"1")

Est_c_21 <- GM("theta_c_2.csv",0,"2")

Est_y1_21 <- GM("theta_y1_2.csv",1,"2")

Est_y2_21 <- GM("theta_y2_2.csv",2,"2")

Est_y3_21 <- GM("theta_y3_2.csv",3,"2")

Est_c_31 <- GM("theta_c_3.csv",0,"3")

Est_y1_31 <- GM("theta_y1_3.csv",1,"3")

Estimating Parameters of Partial Differential Equations with Gradient Matching 51

Est_y2_31 <- GM("theta_y2_3.csv",2,"3")

Est_y3_31 <- GM("theta_y3_3.csv",3,"3")

Est_c_sp <- GM("theta_c_sp.csv",0,"special")

Est_y1_sp <- GM("theta_y1_sp.csv",1,"special")

Est_y2_sp <- GM("theta_y2_sp.csv",2,"special")

Est_y3_sp <- GM("theta_y3_sp.csv",3,"special")

boxplot(Est_c_31[,1],Est_y1_31[,1],Est_y2_31[,1],Est_y3_31[,1],

 Est_c_sp[,1],Est_y1_sp[,1],Est_y2_sp[,1],Est_y3_sp[,1],

 names = rep(c("noise free","SNR=100","SNR=30","SNR=10"),2),main="Point estimates

of diffusion coefficients from different sampling strategies")

abline(h=2,v=4.5,lty=c(2,1))

text(x=c(2.5,6.5),y=-7,labels=c("sampling uniformly from the space","sampling more points

around the peak"))

boxplot(Est_c_31[,2],Est_y1_31[,2],Est_y2_31[,2],Est_y3_31[,2],

 Est_c_sp[,2],Est_y1_sp[,2],Est_y2_sp[,2],Est_y3_sp[,2],

 names = rep(c("noise free","SNR=100","SNR=30","SNR=10"),2),main="Point estimates

of advection coefficients from different sampling strategies")

abline(h=3,v=4.5,lty=c(2,1))

text(x=c(2.5,6.5),y=-30,labels=c("sampling uniformly from the space","sampling more points

around the peak"))

boxplot(Est_c_31[,1],Est_y1_31[,1],Est_y2_31[,1],Est_y3_31[,1],

 Est_c_21[,1],Est_y1_21[,1],Est_y2_21[,1],Est_y3_21[,1],

 Est_c_11[,1],Est_y1_11[,1],Est_y2_11[,1],Est_y3_11[,1],ylim=c(-5,5),

 names = rep(c("noise free","SNR=100","SNR=30","SNR=10"),3),main="Point estimates

of diffusion coefficients from different space and time region")

abline(h=2,lty=2)

abline(v=c(4.5,8.5))

text(x=c(2.5,6.5,10.5),y=-3,labels=c("x∈(0,2),t∈(0,2)", "x∈(0,2),t∈(0.1,2)", "x∈(0,2),t∈

(0.3,2)"))

boxplot(Est_c_31[,2],Est_y1_31[,2],Est_y2_31[,2],Est_y3_31[,2],

 Est_c_21[,2],Est_y1_21[,2],Est_y2_21[,2],Est_y3_21[,2],

 Est_c_11[,2],Est_y1_11[,2],Est_y2_11[,2],Est_y3_11[,2],ylim=c(-5,10),

 names = rep(c("noise free","SNR=100","SNR=30","SNR=10"),3),main="Point estimates

of advection coefficients from different space and time region")

abline(h=3,lty=2)

abline(v=c(4.5,8.5))

text(x=c(2.5,6.5,10.5),y=8,labels=c("x∈(0,2),t∈(0,2)", "x∈(0,2),t∈(0.1,2)", "x∈(0,2),t∈

(0.3,2)"))

boxplot(Est_c_11[,2],Est_y1_11[,2],Est_y2_11[,2],Est_y3_11[,2],Est_c_21[,2],Est_y1_21[,2],Est_y2_21[,

2],Est_y3_21[,2])#,Est_y1_31[,2],Est_y2_31[,2],Est_y3_31[,2],ylim=c(-10,10)

Estimating Parameters of Partial Differential Equations with Gradient Matching 52

abline(h=3,lty=2)

boxplot(Est_c_1[,1],Est_y1_1[,1],Est_y2_1[,1],Est_y3_1[,1],Est_c_2[,1],Est_y1_2[,1],Est_y2_2[,1],Est_y

3_2[,1],names = rep(c("noise free","SNR=100","SNR=30","SNR=10"),2),main="Point estimates of

Diffusion coefficients")

abline(h=2,lty=2)

legend("topleft",legend = c("t=[0.3,2]","x=[0,2]"));legend("topright",legend =

c("t=[0,2]","x=[0.3,2]"))

boxplot(Est_c_1[,2],Est_y1_1[,2],Est_y2_1[,2],Est_y3_1[,2],Est_c_2[,2],Est_y1_2[,2],Est_y2_2[,2],Es

t_y3_2[,2],names = rep(c("noise free","SNR=100","SNR=30","SNR=10"),2),main="Point estimates

of Advection coefficients")

abline(h=3,lty=2)

legend("topleft",legend = c("t=[0.3,2]","x=[0,2]"));legend("topright",legend =

c("t=[0,2]","x=[0.3,2]"))

GM_closedfrom.r

l <- 10

xt1 <- seq(0,2,length.out = l)

xt2 <-seq(0.3,5,length.out = l)

cxt<-matrix(0,l,l)

for (i in 1:l){

 for(j in 1:l){

 cxt[i,j] <- 10/sqrt(4*pi*2*xt2[i])*exp(-(xt1[j]-3*xt2[i])^2/(4*2*xt2[i]))

 }

}

a<-xt1[2]-xt1[1]

b<-xt2[2]-xt2[1]

cxt.noise <- cxt+matrix(rnorm(l^2,0,sqrt(var(as.numeric(cxt))/1000)),l)

gradient <- function(cxt,i,j,a,b){

 nx <- ncol(cxt)

 nt<- nrow(cxt)

 dcdt<- (cxt[i+1,j]-cxt[i-1,j])/(2*b)

 dcdx<- (cxt[i,j+1]-cxt[i,j-1])/(2*a)

 d2cdx2 <- (cxt[i,j+1]+cxt[i,j-1]-2*cxt[i,j])/(a^2)

 return(list(dcdt,dcdx,d2cdx2))

}

gradient2 <- function(cxt,a,b){

 nx <- ncol(cxt)

 nt<- nrow(cxt)

 dcdt <- matrix(NaN,nt,nx)

 dcdx <- matrix(NaN,nt,nx)

Estimating Parameters of Partial Differential Equations with Gradient Matching 53

 d2cdx2 <- matrix(NaN,nt,nx)

 for (i in 2:(nt-1)){

 for (j in 2:(nx-1)){

 result<-gradient(cxt,i,j,a,b)

 dcdt[i,j]<-result[[1]]

 dcdx[i,j]<-result[[2]]

 d2cdx2[i,j]<-result[[3]]

 }

 }

 return(list(dcdt=dcdt,dcdx=dcdx,d2cdx2=d2cdx2))

}

re<-gradient2(cxt,a,b)

re$dcdt[10,2]+3*re$dcdx[10,2]-2*re$d2cdx2[10,2]

re2<-gradient2(cxt.noise,a,b)

re2$dcdt[10,20]+3*re2$dcdx[10,20]-2*re2$d2cdx2[10,20]

dcdt<-numeric((l-2)^2)

for (i in 1:(l-2)){

 dcdt[((l-2)*i-(l-3)):((l-2)*i)]<-re2$dcdt[i+1,2:(l-1)]

}

dcdx<-numeric((l-2)^2)

for (i in 1:(l-2)){

 dcdx[((l-2)*i-(l-3)):((l-2)*i)]<-re2$dcdx[i+1,2:(l-1)]

}

d2cdx2<-numeric((l-2)^2)

for (i in 1:(l-2)){

 d2cdx2[((l-2)*i-(l-3)):((l-2)*i)]<-re2$d2cdx2[i+1,2:(l-1)]

}

summary(lm(dcdt~dcdx+d2cdx2-1))

plot(dcdt[-(1:8)],dcdx[-(1:8)])

fittedgp <- read.csv("fittedgp.csv",header = FALSE)

plot((0:200)/100,as.numeric(fittedgp[180,]),type="l")

gr.fittedgp <- gradient2(fittedgp,0.01,0.01)

summary(lm(as.numeric(gr.fittedgp$dcdt)~as.numeric(gr.fittedgp$dcdx)+as.numeric(gr.fittedg

p$d2cdx2)-1))

gr.fittedgp$d2cdx2[200,150]

fittedgpsexp<-read.csv("fittedgpsexp.csv",header=FALSE)

plot(as.numeric(fittedgpsexp[180,]),type="l")

gr.fittedgpsexp<-gradient2(fittedgpsexp,0.01,0.01)

summary(lm(as.numeric(gr.fittedgpsexp$dcdt[-(1:30),])~as.numeric(gr.fittedgpsexp$dcdx[-

(1:30),])+as.numeric(gr.fittedgpsexp$d2cdx2[-(1:30),])-1))

plot(as.numeric(gr.fittedgpsexp$dcdt),as.numeric(gr.fittedgpsexp$d2cdx2))

Estimating Parameters of Partial Differential Equations with Gradient Matching 54

par(mfcol=c(1,1))

plot((0:200)/100,as.numeric(fittedgp[181,]),type="l",xlab="Position x",ylab = "Function

values",lwd=2,lty=2,col=2)

lines((0:200)/100,as.numeric(fittedgpsexp[181,]),lwd=2,lty=3,col=4)

cxt_t_1.8 <- 10/sqrt(4*pi*2*1.8)*exp(-((0:200)/100-3*1.8)^2/(4*2*1.8))

lines((0:200)/100,cxt_t_1.8,lwd=1)

legend("topleft",legend=c("closed form solution","GP with squared exponential kernel","GP

with MLP kernel"),lty=c(1,3,2),col=c(1,4,2))

d.fittedgp <- rep(NA,201)

d.fittedsecp <- rep(NA,201)

d.pde <- rep(NA,201)

for (i in 2:200){

 d.fittedsecp[i] <- (fittedgpsexp[181,i+1]-fittedgpsexp[181,i-1])/0.02

 d.fittedgp[i] <- (fittedgp[181,i+1]-fittedgp[181,i-1])/0.02

 d.pde[i] <- (cxt_t_1.8[i+1]-cxt_t_1.8[i-1])/0.02

}

plot((1:199)/100,d.pde[2:200],type="l",xlab="Position x",ylab = "Partial derivatives",ylim=c(-1,1))

lines((1:199)/100,d.fittedsecp[2:200],lwd=2,lty=3,col=4)

lines((1:199)/100,d.fittedgp[2:200],lwd=2,lty=2,col=2)

legend("topleft",legend=c("closed form solution","GP with squared exponential kernel","GP

with MLP kernel"),lty=c(1,3,2),col=c(1,4,2))

dd.fittedgp <- rep(NA,201)

dd.fittedsecp <- rep(NA,201)

dd.pde <- rep(NA,201)

for (i in 2:200){

 dd.fittedsecp[i] <- (fittedgpsexp[181,i+1]+fittedgpsexp[181,i-1]-2*fittedgpsexp[181,i])/0.01^2

 dd.fittedgp[i] <- (fittedgp[181,i+1]+fittedgp[181,i-1]-2*fittedgp[181,i])/0.01^2

 dd.pde[i] <- (cxt_t_1.8[i+1]+cxt_t_1.8[i-1]-2*cxt_t_1.8[i])/0.01^2

}

plot((1:199)/100,dd.pde[2:200],type="l",xlab="Position x",ylab = "Second-order partial

derivatives",ylim=c(-30,30))

lines((1:199)/100,dd.fittedsecp[2:200],lwd=2,lty=3,col=4)

lines((1:199)/100,dd.fittedgp[2:200],lwd=2,lty=2,col=2)

legend("topleft",legend=c("closed form solution","GP with squared exponential kernel","GP

with MLP kernel"),lty=c(1,3,2),col=c(1,4,2))

cell_movement.r

Estimating Parameters of Partial Differential Equations with Gradient Matching 55

cell <- read.csv("CSE2D.csv",header=FALSE)

cell <- cell[,c(1,2,3)]

colnames(cell)<-c("x","t","p")

cell$dcdt<-NaN

cell$dcdx<-NaN

cell$d2cdx2<-NaN

a<-cell$x[2]-cell$x[1]

b<-2

for (i in 1:3200){

 if (cell$x[i]!=-100&cell$x[i]!=900&cell$t[i]!=0&cell$t[i]!=14){

 cell$dcdt[i] <- (cell$p[i+400]-cell$p[i-400])/(2*b)

 cell$dcdx[i] <- (cell$p[i+1]-cell$p[i-1])/(2*a)

 cell$d2cdx2[i] <- (cell$p[i+1]+cell$p[i-1]-2*cell$p[i])/(a^2)

 }

}

index<- !is.nan(cell$dcdt)

summary(lm(cell$dcdt[index]~cell$dcdx[index]+cell$d2cdx2[index]-1))

plot(cell$d2cdx2,cell$dcdt)

loss_cell <- function(dcdt,dcdx,d2cdx2,par){

 u <- par[1]

 D2 <- par[2]^2

 sum((dcdt+u*dcdx-D2*d2cdx2)^2)

}

optim(c(18,0),loss_cell,dcdt=cell$dcdt[index],dcdx=cell$dcdx[index],d2cdx2=cell$d2cdx2[index

],method="Nelder-Mead")

cell_movement_model2&3.r

C322D <- read.csv("C322D.csv",header=FALSE)

C522D <- read.csv("C522D.csv",header=FALSE)

CSE2D <- read.csv("CSE2D.csv",header=FALSE)

colnames(CSE2D) <- c("x","t","50","5","95")

colnames(C322D) <- c("x","t","50","5","95")

colnames(C522D) <- c("x","t","50","5","95")

sigmoidal_attractant <- function(x,t,alpha,beta,gamma){

 alpha * beta * exp(-beta *(x-gamma*t))/(1+exp(-beta*(x-gamma*t)))^2

}

CSE2D$sigmodal<-sigmoidal_attractant(CSE2D$x,CSE2D$t,1,1,1)

CSE2D$x_centered <- CSE2D$x-CSE2D$x[244]

Estimating Parameters of Partial Differential Equations with Gradient Matching 56

CSE2D$large_c <- 10^5*CSE2D$`50`

C322D$large_c <- 10^5*C322D$`50`

C522D$large_c <- 10^5*C522D$`50`

plot(CSE2D$x_centered[CSE2D$t==0],CSE2D$`50`[CSE2D$t==0])

dcdt <- function(c,x,t){

 a <- x[2] -x[1]

 b<- 2

 result <- rep(NaN,length(x))

 for (i in 1:3200){

 if (i%%400!=1&i%%400!=0&t[i]!=0&t[i]!=14)

 result[i]<-(c[i+400]-c[i-400])/(2*b)

 }

 return(result)

}

dcdx(CSE2D$sigmodal,CSE2D$x,CSE2D$t)

dcdx <- function(c,x,t){

 a <- x[2] -x[1]

 b<- 2

 result <- rep(NaN,length(x))

 for (i in 1:3200){

 if (i%%400!=1&i%%400!=0&t[i]!=0&t[i]!=14)

 result[i]<-(c[i+1]-c[i-1])/(2*a)

 }

 return(result)

}

d2cdx2 <- function(c,x,t){

 a <- x[2] -x[1]

 b<- 2

 result <- rep(NaN,length(x))

 for (i in 1:3200){

 if (i%%400!=1&i%%400!=0&t[i]!=0&t[i]!=14)

 result[i]<-(c[i+1]+c[i-1]-2*c[i])/(a^2)

 }

 return(result)

}

Loss_function <- function(par,A,xx,tt){

 alpha <- par[1]

 beta<-par[2]

 gamma<-par[3]

 D<-abs(par[4])

 center<-par[5]

Estimating Parameters of Partial Differential Equations with Gradient Matching 57

 c<-A

 x<-xx-center

 t<-tt

 sigmoid <- sigmoidal_attractant(x,t,alpha,beta,gamma)

 dc_dt <- dcdt(c,x,t)

 dc_dx <- dcdx(sigmoid*c,x,t)

 d2c_dx2 <- d2cdx2(c,x,t)

 return(sum((dc_dt[!is.nan(dc_dt)] + dc_dx[!is.nan(dc_dx)] - D *

d2c_dx2[!is.nan(d2c_dx2)])^2))

}

Loss_function(CSE2D$`50`,CSE2D$x,CSE2D$t,c(0,0,0,0))

par_optim <- optim(par=c(7930.70859250 , -0.01044872 , -27.50366735 ,

78),fn=Loss_function,A=CSE2D$large_c,xx=CSE2D$x,tt=CSE2D$t,method="Nelder-

Mead",control = list(maxit=10000,trace=1))

sexp_c <- optim(par=c(5723.15598817 , - 0.01822074 , -31.39842450,

75,563.04604896),fn=Loss_function,A=CSE2D$large_c,xx=CSE2D$x,tt=CSE2D$t,method="Neld

er-Mead",control = list(maxit=10000,trace=1))

m32_b <- optim(par=c(971.93712923 , -0.01038666 , -27.55155552 ,

75.08944061),fn=Loss_function,A=C322D$large_c,xx=C322D$x,tt=C322D$t,method="Nelder-

Mead",control = list(maxit=10000,trace=1))

m32_c <- optim(par=c(9.108263e+03 ,-8.571173e-03 ,-2.837372e+01 , 5.993772e-05 ,

4.438400e+02),fn=Loss_function,A=C322D$large_c,xx=C322D$x,tt=C322D$t,method="Nelder-

Mead",control = list(maxit=10000,trace=1))

m52_b <- optim(par=c(930.70859250 , -0.01044872 , -7.50366735 ,

75),fn=Loss_function,A=C522D$large_c,xx=C522D$x,tt=C522D$t,method="Nelder-

Mead",control = list(maxit=10000,trace=1))

m52_c <- optim(par=c(5723.06928480 , -0.01822045, -31.39900051, 380.03181225,

563.04398174),fn=Loss_function,A=C522D$large_c,xx=C522D$x,tt=C522D$t,method="Nelder-

Mead",control = list(maxit=10000,trace=1))

Likelihood_and_AIC.r

likelihood_grid <- data_c$V1

for (i in 1:324){

 for (j in (i+1):325){

 if (likelihood_grid[i]==likelihood_grid[j])

Estimating Parameters of Partial Differential Equations with Gradient Matching 58

 likelihood_grid[j]<- -10^4

 }

}

likelihood_grid<-likelihood_grid[likelihood_grid!=-10^4]

likelihood_grid<-sort(likelihood_grid)

write.csv(likelihood_grid,"grid.csv")

likelihood_sexp <- read.csv("likelihood_sexp.csv",header = FALSE)

l_sexp_a <- read.csv("likelihood_sexp_a.csv",header = FALSE)

l_sexp_b <- read.csv("likelihood_sexp_b.csv",header = FALSE)

l_m32_a <- read.csv("likelihood_m32_a.csv",header = FALSE)

l_m32_b <- read.csv("likelihood_m32_b.csv",header = FALSE)

l_m32_c <- read.csv("likelihood_m32_c.csv",header = FALSE)

l_m52_a <- read.csv("likelihood_m52_a.csv",header = FALSE)

l_m52_b <- read.csv("likelihood_m52_b.csv",header = FALSE)

l_m52_c <- read.csv("likelihood_m52_c.csv",header = FALSE)

lgp_likelihood <- function(x,t,density){

 for (i in 1:241){

 if (abs(likelihood_grid[i]-x<10^-6))

 xi <- 243-i

 }

 ti <- 0.5*t+1

 return(abs(as.numeric(density[ti,xi])))

}

log_likelihood_sexp_c <- 0

for (i in 1:325){

 log_likelihood_sexp_c<- log_likelihood_sexp_c +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],likelihood_sexp))

}

log_likelihood_sexp_c

log_likelihood_sexp_a <- 0

for (i in 1:325){

 log_likelihood_sexp_a<- log_likelihood_sexp_a +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_sexp_a))

}

log_likelihood_sexp_b <- 0

for (i in 1:325){

Estimating Parameters of Partial Differential Equations with Gradient Matching 59

 log_likelihood_sexp_b<- log_likelihood_sexp_b +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_sexp_b))

}

log_likelihood_m32_a <- 0

for (i in 1:325){

 log_likelihood_m32_a<- log_likelihood_m32_a +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_m32_a))

}

log_likelihood_m32_b <- 0

for (i in 1:325){

 log_likelihood_m32_b<- log_likelihood_m32_b +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_m32_b))

}

log_likelihood_m32_c <- 0

for (i in 1:325){

 log_likelihood_m32_c<- log_likelihood_m32_c +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_m32_c))

}

log_likelihood_m52_a <- 0

for (i in 1:325){

 log_likelihood_m52_a<- log_likelihood_m52_a +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_m52_a))

}

log_likelihood_m52_b <- 0

for (i in 1:325){

 log_likelihood_m52_b<- log_likelihood_m52_b +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_m52_b))

}

log_likelihood_m52_c <- 0

for (i in 1:325){

 log_likelihood_m52_c<- log_likelihood_m52_c +

log(lgp_likelihood(x=data_c$V1[i],t=data_c$V2[i],l_m52_c))

}

l_l_s <-

c(log_likelihood_sexp_a,log_likelihood_m32_a,log_likelihood_m52_a,log_likelihood_sexp_b,lo

g_likelihood_m32_b,

log_likelihood_m52_b,log_likelihood_sexp_c,log_likelihood_m32_c,log_likelihood_m52_c)

AICs <- 2*c(2,2,2,4,4,4,5,5,5)-2*l_l_s

BICs <- log(325)*c(2,2,2,4,4,4,5,5,5)-2*l_l_s

Estimating Parameters of Partial Differential Equations with Gradient Matching 60

write.csv(cbind(l_l_s,AICs,BICs),"AIC.csv")

