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Abstract 

This dissertation takes a theoretical approach to addresses the existing gap between 

current episodic memory theory and clinical phenotypes found on memory disorders. This 

issue is particularly relevant to Alzheimer’s disease diagnose and to the efforts on diagnosing 

Alzheimer’s disease with electroencephalography (EEG) markers.  

The dissertation uses well know computational methods and multivariate patter 

analysis to help start bridging the marker measures, theoretical models and the observable 

clinical memory disorders simultaneously.  

I used secondary data from 73 healthy elderly participants that took a cross-modal 

old/new behavioural task while being recorded with a 128-channel EEG sensor. I will test for 

significant correlation between the representational similarity of the brain response and 

representational similarity of 110 clustered image-sound stimuli.  Additionally, I carried out 

an event related spectrum perturbations analysis to gain information on the oscillatory nature 

of the semantically grouped responses.  

I found a significant correlation between RSA brain response and RSA semantic 

memory model. In addition, the oscillatory data signals for a different response modulated by 

theta and alpha powers depending on the cluster presented.   
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Introduction 

In the next few paragraphs, I will go through the biological definition of Alzheimer’s and 

then expand upon an Alzheimer’s disease-specific symptom: episodic memory disorder.  

Then, I will proceed to lay down the existing gap between how individuals experience 

memory disorders in Alzheimer’s and how memory theory accounts for such realities. 

Finally, I will provide an overview of how this dissertation contributes to finding solutions 

to the problem. 

Alzheimer's disease Definition 

Alzheimer's disease is already among the leading causes of death in most high-

income countries (Alzheimer’s Association, 2017). By 2050, the Alzheimer’s Association 

(2017) expects a new case of Alzheimer's disease (AD) to develop every 3 seconds. 

Therefore, the need to have an effective and available method of diagnosis becomes more 

evident. This will allow for an accurate understanding of AD prevalence, incidence and 

improvement in patients’ lives (Alzheimer’s Association, 2017).  

Alzheimer’s disease is usually defined as a clinico-pathological entity (Cummings, 

2004) that requires (1) for the presence of a progressive dementia and (2) a specific 

neuropathological change (e.g., senile plaques). This definition is problematic when we try 

to observe senile plaques. For the time being, the only known way to gather and detect 

senile plaques is by looking through brain tissue under the microscope. In order to achieve 

this, most neuropathological investigations manage to access brain tissue only at post 

mortem or, in rare occasions, by a brain biopsy. In practical terms, this implies that AD 

can be diagnosed with 100% accuracy only after the patient's death. 

A way to circumvent this problem is to identify and use biomarkers of the disease. 

Biomarkers are naturally occurring molecules, genes, or characteristics by which a 

particular pathological process or disease can be identified. For AD, the two most 

commonly used biomarkers are a peptide called Amyloid-𝛽 (the main component of the 
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senile plaques) and a protein called Tau. The use of these biomarkers (and memory tests) 

had led to a widely adopted classification of an early stage in AD called “probable AD” 

(McKhann, Drachman, Folstein, Katzman, Price & Stadlan, 1984).  

These changes have sparked a debate regarding the definition of AD. New research 

criteria proposed and advanced by the International Work Group for Alzheimer's 

Diagnostic Criteria (IWG, 2010) suggest that AD should be understood as a clinico-

biological entity, that is to say, the diagnosis of AD should be made when there are both 

clinical (episodic memory defects of the amnesic type) and in-vivo biological evidence 

(e.g., known biomarkers such as Amyloid-𝛽 or phospho-tau) of AD pathology (Cummings, 

Dubois, Molinuevo & Scheltens, 2013). 

Alzheimer's Disease an Episodic Memory Disorder 

Episodic memory is “an information processing system that (a) receives and stores 

information about temporally dated episodes or events, and about temporal–spatial 

relations among these events, (b) retains various aspects of this information, and (c) upon 

instructions transmits specific retained information to other systems, including those 

responsible for translating this information into behaviour and conscious awareness” 

(Tulving, 1972, p. 385). However, episodic memory is not fully accounted for in observed 

symptoms of AD.  

The new AD research definition no longer requires the clinical presence of 

dementia. Instead, free recall and normalised cueing play a key role on its detection. Free 

recall refers to a classical psychological task in which participants are asked to remember 

and callout as many items as possible from a list usually pertaining to a category. 

Normalised with cueing refers to words or phrases that aid recall of previously experienced 

stimuli (Goldstein, 2014).  

As recommended on the second version of the International Working Group for 

Alzheimer's Disease Diagnosis (IWG-2), clinical symptoms of AD exist when the episodic 
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memory is impaired. The recommended detector for episodic memory disorders is the 

“free and cued selective reminding test” (Dubois et al., 2014). That is to say, there is 

presence of a specific memory profile characterised by a low free recall that is not 

normalised by cueing (Dubois et al., 2014; Dubois & Albert, 2004) and is a valid clinical 

marker of typical AD. 

Dementia is a set of symptoms that visibly affects an individual's ability to 

perform.  Episodic memory disorder, on the other hand, is heterogeneous (e.g., visual 

memory, semantic memory, autobiographical memory, etc.) and on a moderate level does 

not affect an individual's ability to perform. Replacing dementia with episodic memory 

disorder as a requisite allows for timely diagnosis but increases uncertainty on account of 

the aforementioned reasons.  

Having in mind the three classifications of AD (Typical, Atypical & Mixed AD), 

an estimated 6-14% of AD cases present variation in the typical memory symptoms. Each 

of these atypical forms of AD present with relative preservation of memory (Dubois et al., 

2014). Mixed AD has been reported in 50% of all AD autopsies (Schneider, Wilson, 

Bienias, Evans, & Bennet, 2004). In IWG-2, the atypical AD manifestation includes four 

variants (Posterior, Logopenic, Frontal variant, and Down syndrome variants). IWG-2 

shows that topographical markers as well as Tau PET (Phillips et al., 2018) can also be 

used to characterise the clinical phenotype.  

It is not clear which are the clinical cores to each of these atypical AD 

presentations, whether they share the same conceptual foundation in cognitive theory, and 

how they can be operationalised in terms of the test selected (Dubois et. al 2014). There is 

a gap between specific clinical phenotypes (Posterior, Logopenic, Frontal & Down’s) in 

AD and the current cognitive theoretical models. Another way of saying it is that we 

cannot be sure what is wrong with the memory of some AD patients because their 
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alterations do not seem to fit with current memory concepts. Also, they do not account for 

how they are affected by brain pathology. 

Semantic Memory Models as a Broader Concept of Episodic Memory 

In an effort to address the gap between atypical clinical phenotypes in AD 

(Posterior, Logopenic, Frontal, Down’s variants) and the current cognitive models of 

memory, we will use and understand episodic memory as an equivalent to semantic 

memory.  

 In 1972, Tulving made explicit the difference between semantic and episodic 

memory. He stated that semantic memory is a memory system that does not necessarily 

relate to spatiotemporal events and that it can be used as input perception in addition to 

previous cognitive structure concepts (e.g., memory of words). In contrast, episodic 

memory is based exclusively on perceptual experiences of spatiotemporal events (e.g., 

remembering a trip to the beach).  

Modern semantic models believe that semantic memory is built from repeated 

episodic experiences (Busemeyer, Wang, Townsend, & Eidels, 2015). I assume that these 

models understand that whenever someone encounters a semantic representation (e.g., 

word, image), it enters the memory. It starts as a perceptual memory, which is associated 

with the hippocampus (Aggleton & Brown, 1999); later on, if the memory is encoded, it 

passes on to establish neuronal connections along with other memories, thus becoming an 

increasingly thoughtful and abstract concept in memory, associated with the cortex 

(Cabeza, Ciaramelli, Olson, & Mescovich, 2008).  

This implies also that our memory representation is increasingly defined by the 

context in which it is stored. Context here refers to both the circumstances in which the 

observer encountered the semantic representations (e.g., me now at the beach) and the 

other cognitive structures associated with the representations (e.g., all the childhood, 

adolescent, and various geographical location connection memories that enrich my concept 
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of the beach). Therefore, semantic and episodic memories, although conceptually different 

are indistinguishable when recalled (Greenberg & Verfaillie, 2010; Andrews, Vigliocco, & 

Vinson, 2009).  

For this study, I use a distributional semantic model. This model is certainly not 

new, dating back to Wittgenstein (1953). The usual way to summarise it is Firth’s (1957) 

phrase, “You will know a word by the company it keeps.” Essentially this means looking 

into corps of text and establishing how words relate to each other.  

Electroencephalogram Markers and Cognitive Decline 

To bring closer the gap between atypical clinical phenotypes in AD (Posterior, 

Logopenic, Frontal, Down’s variants) and the current cognitive models of memory, the 

electroencephalogram (EEG) marker could be of great use.    

In recent years, studies have proposed a variety of computational approaches to 

detect subtle perturbations in the EEG signal of AD patients (Dauwels, Cichoki, & 

Vialatte, 2010). That is to say, professionals are using algorithms to process EEG signals 

to tell apart healthy elderly controls from mild cognitively impaired (MCI) and preclinical 

AD (preAD) patients with accuracies, sensitivities, and specificities that range between 

70% to 90%.  Recent reviews have found that AD makes EEG signals slower and less 

complex and changes their synchrony (Horvath, Csukly, Szucs, & Sakovics, 2018; 

Dauwels et al., 2010). Technicians can obtain EEG markers using different signal 

processing measures.  

Signal processing methods change depending on the task. The original signal is 

transformed using the Fourier series or Wavelets series. They can be time fixed, and we 

can see wave amplitudes and latencies, average them together, and use them in a discrete 

or continuous way – transformed, filtered, etc. In our case, we have two main 

considerations: (1) there is an event or stimulus and (2) the oscillatory response. I chose 



 
SEMANTIC MEMORY REPRESENTATION  6 
 

 

the oscillatory response as I think it is especially informative of how patients are recalling 

memory.  

Contrary to what was previously understood, brain waves appear to have an 

important role in brain area interactions (Mankin, 2018; Zhang, Watrose, Patel, & Jacobs, 

2018). Therefore, I have focused on signal processing techniques that could represent 

oscillations behaviour over a period of time. This focus allows me to observe the brain’s 

electrical responses after the participant’s experience cross-modal image-sound. So-called 

time-frequency maps are the most typically used approach to this kind of situation (e.g., 

Shanin, Picton, & Miller, 2009). Time-frequency measures are spectral components of a 

time series. These graphs depict the power of a set of frequency bands against time, so 

they show how much of the signal’s energy comes from the frequency f at the time 

instance t (van Drongelen, 2018, p. 437). I will explain this in more detail in the statistical 

analysis section.  

Representational Similarity Analysis 

Representational similarity analysis (RSA) is a powerful tool that enables 

professionals to test how significant the relation is between semantic distribution matrices 

and to find out how much of this is reflected in their relation to the hold in the brain in a 

broad and direct fashion. We believe that if these relations exist, we will be able to more 

accurately diagnose atypical AD disease in the future. 

RSA is a particular type of multivariate pattern analysis (MVPA) that is commonly 

used in functional magnetic resonance imaging (Fonteneau, Kriegeskorte, & Marslen-

Wilson, 2012). Multivariate pattern analysis has been successfully used in some studies 

using EEG (Fonteneau et al., 2012; King & Dehaene, 2014; Chan, Halgren, Marinkovic, & 

Cash, 2010; Turner, Johnston, de Boer, Morawetz, & Bode, 2017). Cichy and Pantazis 

(2017), after a comparative study between magnetoencephalography (MEG) and EEG, 

suggested a wider adoption of these methods in both MEG and EEG research.  
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RSA tests hypothesise about the representational geometry of semantic 

representations and the brain’s responses, which is characterised by the representational 

dissimilarities among the stimuli (Kriegeskorte & Kievit, 2013). To understand this better, 

let's consider the response time (RT) of an individual during any experimental task. This 

RT can be decomposed into different attributes or factors (e.g., correct/incorrect, latency, 

type of question, etc.). A mathematical function can collapse all of these factors into a 

single point – a typical example of this procedure is the single point we drew in school 

when using the Euclidean graphic that was determined by two factors x and y). This point 

we have drawn in space has a distance between itself and other points we have drawn in 

space. The same procedure can be applied to the brain’s physiological information, 

therefore making it possible to compare distances between the tasks and brain data.  

This Dissertation 

The present study will address the gap by adopting a model-based cognitive 

neuroscientific approach (Love, Palmeri, & Turner, 2016; Forstmann & Wagenmakers, 

2015) to test for a relation between the distribution of semantic representations in space 

along with the distribution of physiological responses in the brain. We will understand 

semantic representations as an abstract language in which meaning can be conveyed (e.g., 

image-sound stimuli; Vigliocco & Vinson, 2007). The idea is to corroborate or disprove 

the distributional semantic model.    

This approach adopts a well-known theoretical model from mathematical 

psychology (Latent Semantic Analysis) along with a multivariate pattern analysis 

(Representational Similarity Analysis).  

The procedure started with 110 images from a previous EEG AD marker study, 

distributed along a theoretical “semantic space”. I then formed 12 hierarchical clusters 

with the images. I used electroencephalogram data (EEG) of 73 healthy elderly 

participants from the primary study to measure brain activity. I averaged and grouped the 
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EEG data, replicating the same previously grouped clusters. I then analysed the primary 

study data using representational similarity analysis (RSA) to see if there is a correlation 

between the distribution of the images and the distribution of the physiological response.  

Furthermore, I used time-frequency maps to gain insight into the brain wave 

activity of the formed clusters, even though no significance levels were tested. All of these 

steps will be explained in more detail in the methods section. 

I hypothesise that the characteristics of the representation of brain activity (EEG 

frequencies analysed through representational similarity analysis) will correlate to the 

characteristics of the representation of the latent semantic computational model. I also 

expect to extract oscillatory information from the primary study data for future research. 

I hope these findings will help us to determine whether semantic distributional 

models have a correlate in the brain. I also hope to help bridge our understanding of the 

atypical clinical phenotypes in AD and cognitive memory models and to help standardise 

memory tests along with EEG as a diagnostic tool for AD. 
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Method 

Sample and Participant Selection 

This dissertation is an analysis based on secondary data from a previous clinical 

study (Tieges, Price, Hughes, McLean, Conway & Kilborn, 2010). The primary study 

developed a behavioural and event-related potential (ERP) marker for mild AD. The 

primary study gathered 76 controls and 83 AD patients who undertook a cross-modal 

behavioural task. The final control set of healthy elder participants was 73 (36 men), since 

data for three controls were rejected due to various failures in data registration. The mean 

age of the control group was 73.30 years (SD = 5.92). This study uses only the control 

group.  

The information was gathered in 2010 at four clinics: Cognatec Research Centre 

Memory Clinic (Blackpool), Bradford Memory Clinic (Bradford), Memory Assessment 

Research Centre (Southampton), and Glasgow Memory Clinic (Clydebank). 

Primary study’s physiological recording approach 

The researchers from the primary study received written consent from every 

participant prior to entry. At the beginning of the experiment, the participants and patients 

went through a brief background presentation and explanation of the procedure. Next, they 

were seated in front of a computer monitor with speakers placed on either side, after which 

they were prepared for the EEG recordings. 

The researchers carried out a sound test to assess the optimal sound level of the 

spoken words for each participant. The words “Press New” and “Press Old” were 

presented in white on a black background (twelve trials in total). Participants were 

instructed to respond by pressing the indicated button, and auditory feedback was given 

through the spoken words, “correct” or “incorrect”. This procedure allowed participants to 

familiarise themselves with the response device. The total duration of the memory test 
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amounted to approximately 25 minutes. The study was performed in accordance with the 

Declaration of Helsinki (WMA, 1974). 

All EEG data obtained in the primary study were recorded on an 

electroencephalogram (EEG) signal from a 128-channel Geodesic Sensor Net (Electrical 

Geodesics Inc., Eugene, Oregon; Tucker, 1993). Impedances were kept below 50, band-

pass filtered between 0.1 and 200 Hz. The ground electrode was positioned at the vertex 

(i.e., along the midline, anterior to Fz). The channel configuration is shown in the 

following 2D scalp figure. It shows the distribution of the 128 channels used and in 

colours the defined groups of channels. I formed groups to study based on visually 

detecting in the scalp the more coherent areas. Later on the analysis section, all electrodes 

are considered one group, later central groups (left and right), and the occipital group.   

 

figure 1. In purple the left central electrodes, in green the right central 

electrodes and in yellow the occipital electrodes used later to run RSA 

and ERSP analysis.  
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Primary Data Artefact Removal 

This dissertation removed the same corrupted data epochs as the primary study had 

removed. This artefact removal technique was applied only to the subset data used in the 

time-frequency analysis. The RSA analysis was carried out without artefact removal.  

Muscle and eye movement artefacts were extracted from EEG data in the following 

steps. First, an Independent Component Analysis (ICA) was carried out using EEGLAB 

software (Delorme & Makeig, 2004). Next, the time course of every ICA component was 

correlated with each of the vertical (4 channels) and horizontal (2 channels) 

electrooculogram (EOG) channel time courses. The 11 ICA components that correlated 

highly with one or more EOG channel time courses (between 7 and 25 components) were 

removed from the EEG. Subsequently, epochs containing artefacts in one or more channels 

as well as noisy channels were detected and omitted from further analysis. 

This procedure allowed participants to familiarise themselves with the response 

device, and volume was adjusted to a comfortable level. The memory test was preceded by 

a training session of three practice blocks of ten trials each, followed by the first test block. 

After a short break, two more practice blocks and the final test block were completed. 

Total duration of the memory test amounted to approximately 25 minutes. The study was 

performed in accordance with the Declaration of Helsinki (Revised; 2000). 

Procedures 

Cross-modal associative task. All of the procedures took place as part of the 

primary study. The cross-modal task stimulated both visual and hearing perception modes 

for all participants.  Participants were exposed to pairs of related stimuli (a drawn image 

and a spoken word) presented simultaneously on a computer screen and speaker, 

respectively. Spoken words and image names were controlled for written length and 

written frequency (Francis & Kucera, 1982). The researchers substituted written norms for 
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spoken word norms because the latter are not extensive enough to provide a sufficient 

control across all words and images used in this study. 

The colour images were presented in central vision on a black background, and the 

spoken words were presented through high quality studio monitors. A chinrest provided a 

constant viewing distance from the monitor of approximately 70 cm (visual angle of 2.7ᐤ x 

2.0.ᐤ)  

After either a short or long delay (6 or 39 intervening items, respectively), some 

stimulus pairs were presented for the second or third time. Participants were asked to 

decide whether each stimulus pair was presented for the first time (new item) or had been 

presented previously (old item). They gave their judgment of the new and old by pressing 

a button on the left or the right, respectively. A total of 270 items were presented: 110 in 

the New condition (i.e., items presented for the first time), 100 in the Old/Short condition 

(i.e., items presented a second time after 6 intervening items), and 60 in the Old/Long 

condition (items presented a second time after 39 intervening items).  

On each trial, a stimulus pair was presented with a 3-second duration, after which 

the screen turned black for 1 second. Participants had to give their response within 3 

seconds following stimulus onset. The items were presented in two blocks to allow for a 

rest period. 
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figure 2. Schematic of the continual cross-modal encoding and recognition task. During the 

primary study, each coloured picture was followed by a related spoken word. Some were 

shown only once, some were showed twice and some three times.  

 

Data analysis. EEG data were segmented off-line into 270 single-trial epochs of 

4000 ms (1000 ms pre-stimulus). The researchers in the primary study passed the data used 

in the time-frequency graphics through a low-pass filter at 30 Hz using NetStation 

software. Later on this study, they passed them through a high-pass Butterworth filter, 

selected for its easy implementation and its magnitude response that is maximally flat in 

the pass band (Gallego-Jutglà, Solé-Casals, Vialatte, Dauwels & Cichocki, 2015, p. 6). 

Word comparison using latent semantic analysis. I developed 110 images 

and sounds from the ADEPT primary task to form a cross-modal behavioural test. I 

submitted these images on June 2018 as input to a latent semantic analysis comparison 

program (Laham & Steinhart, 2015) and received a 110 x 110 symmetric matrix that 

holds the cosine comparisons between images. I then sorted the images in alphabetical 

order and compared them to each other using a semantic space 300 factor called ‘1st 

year college’.  
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A semantic space is a mathematical representation of a large body of text. It 

functions like the two axes were we can place a point in our traditional x and y graph. 

Every term, every text, and every novel combination of terms has a high dimensional 

vector representation. When one compares two terms, one compares the cosine of the 

angle between the vectors representing the terms (cosine similarity). This occurs within a 

semantic space. One cannot compare the same word directly between semantic spaces.  

Specifically, the cosine similarities from the matrix come from a semantic space 

titled ‘1st year college’ and have 300 factors. This semantics space was built by 

Touchstone Applied Science Associates, Inc. (TASA). The texts I used were the 3rd, 6th, 

9th, and 12th compulsory texts used in public education. Additionally, there was one 

category for “college” level. The spaces are cumulative, meaning that the 9th semantic 

space includes the 3rd and 6th semantic spaces. For more information regarding the 

semantic spaces, see Laham and Steinhart (2015) or Busemeyer, Zheng, and Whang 

(2015).  

Table 1 shows the subset data that I used for the time-frequency graphics and the 

cosine comparisons. I extracted these from Laham and Steinhart’s (2015) method and 

represented a sample from the total of 110 Images. This table shows the similarity between 

two subsampled clustered groups:   
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Hierarchical clustering. In Figure 2, we can see the rearrangement of images into 

groups or ‘clusters’ of maximal distance between each other. I performed this 

rearrangement using an agglomerative hierarchical clustering method, specifically a 

complete-linkage criteria (1).  

 

(1)  

 

This means that each row (x) is considered its own “cluster” and then paired with 

the furthest row (y) “cluster” possible. Then, the function ‘moves’ up a level. In this way, 

several layers of clusters are made from the bottom up.  Since the words were previously 

selected having a different objective in mind the clustering result generated in this study 

was not previously thought.  

  

  

Table 1

Cosine similarity for soubgroup of images

Watch Rose Button Rocket Plane Moon

(n = 3 trials) (n = 3 trials) (n = 2 trials) (n = 3 trials) (n = 2 trials) (n = 3 trials)

Watch (n = 3 trials) 1.00 .25 .34 .11 .16 .17

Rose (n = 3 trials) .25 1.00 .17 .07 .06 .10

Button (n = 3 trials) .34 .17 1.00 .07 .12 .03

Rocket (n = 3 trials) .11 .07 .07 1.00 .26 .37

Plane (n = 2 trials) .16 .06 .12 .26 1.00 -.01

Moon (n = 3 trials) .17 .10 .03 .37 -.01 1.00

Group 1 Group 2

Note: All distances are contructed using UC LSA Matrix softwear. The semantic space use was ‘1st year college with 300 factors’
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figure 2. Top Complete dendogram with the 110 images that the participants 

saw descripted by words on the left side. Bottom 12 clustered groups of images 

considering a cut-off inconsistency coefficient at 1.95   

 

Statistical analysis. My statistical analysis took the form of a time-frequency 

analysis. Recent research suggests that there may be rich physiological information 

embedded within the power spectrum of neurophysiological recordings, which, in addition 

to power in specific oscillatory frequencies, can be extracted with the appropriate model 
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(Gao, 2016). To gather spectrum information at the same time that we consider time 

dynamics, we need to apply to the EEG signal wavelet transformations. In this method, the 

EEG signal is decomposed into discontinuous oscillating waveforms called wavelets. In 

mathematics, the wavelet transform refers to the representation of a signal in terms of 

finite length oscillating waveforms. These waveforms are scaled and translated so that 

when summed up, they match the input signal. The wavelet function that I used here was 

the most widely available and used, the Morlet complex function (Kropotov, 2016, p. 31). 

By using EEGlab, I implemented the time-frequency analysis with event-related 

spectral perturbations (ERSP) and inter-trial coherence (ITC) measures (Delorme & 

Makeig, 2004). Event-related spectral perturbations (ERSP) represent the spectral power 

difference between the post-stimulus frequency and pre-stimulus baseline frequency. I 

defined the baseline from -500 ms to the image-sound presentation.   

The time-frequency analysis runs from 3 Hz to 125 Hz frequency bands (although 

it is important to consider that the primary study ran the data through a low-pass filter at 35 

Hz, so we will consider only the frequencies under that value). I analysed the frequencies 

in 0.3 Hz increments using a sliding hanning-windowed 3-cycle sinusoidal wavelet 

transform of the time-domain signal with a step size of 5 ms.  

 When we build a wavelet and perform spectral analysis on time series, the 

spectrum reveals the frequency components of the signal. Since spectrum analysis 

considers the hole time domain epoch, it is uncertain where the frequency is allocated in 

time. To increase the time resolution one could reduce the epoch of the input signal. 

Nevertheless, this time reduction necessarily affects resolution of the spectral analysis. The 

time-frequency resolution means that there exists a trade-off between frequency and time 

resolution. I decided to divide every epoch into 100 frequencies and a 100 times (van 

Drongelen, 2018, p. 430).  
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Results 

 

Collected and Baseline Data and Subsets 

The study uses two sources of data: (1) a semantic distribution for 110 image-

sounds and (2) the 73 EEG recordings for healthy elderly participants. There were three 

baseline datasets from which to develop an analysis. 

i) I conducted the first analyses over a grand average for all 73 participants without 

artefact removal. This included the 270 images that every participant saw. The final grand 

average base of individually considered trials amounted to a total of 19,710 trials. 

ii) The second included the 73 participants after using the primary study artefact 

removal technique. After taking away the 4,877 noisy trials, the final amount of trials I 

considered is 14,833. Thus, on average, I had removed 18 (SD = 4.40) trials per image-

sound. When testing for normality using a one-sample Kolmogorov-Smirnov test, I 

rejected the null hypothesis of a normal distribution at the 5% significance level. The 

distribution seems to skew slightly to the right. Those image-sounds that I removed more 

times than a normal distribution would suggest were a puppet (removed 38 times), a violin 

(removed 34 times), a flower (removed 33 times), and chair (removed 31 times). The only 

image that may be accountable for its position is the puppet because it is presented first. 

The violin, flower, and chair are presented as one followed by the other.  

ii) I finished the third sub-datasets whilst using ITC and the ERSP in EEGlab in 

order to visualise the differences between semantic groups. This sub-dataset contains two 

conditions that included three images each (Group 1: Violin, Guitar, Piano; Group 2: 

Stool, Bucket, Saw). The first arrangement contained 426 trials, and the second 

arrangement contained 336 trials, adding to a total of 752 trials. The criteria for selection 

were that all images belong to the same cluster and that the clusters were as far apart as 

possible from each other in time.  
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iii) I sub-grouped all datasets by electrodes of interest.   

Relevant Results 

Behavioural results. When using the primary dataset trial types (New, Old/Short, 

Old/Long), the responses across stimuli seem stable on RT (F (2,268) = 19.69, p < .001), 

with a decrease from 1209 ms in the New condition to 1148 ms and 1114 ms in Old/Short 

and Old/Long conditions, respectively. Error rates did not differ significantly between 

memory conditions (F (2,268) = 1.4, ns) and neither did miss rate (F (2,268) = 2.04, ns). 

Moreover, group and memory did not interact with respect to RT (F (2,268) =.19, ns) or 

error rate (F (2,268) = .42, ns). 

Hierarchical clustering. With Matlab 2018a Update 3, I ran an agglomerative 

cluster tree to the similarity matrix previously obtained from the LSA software. The 

similarity measures I used were cosine distances. As I stated in the method section, the 

clustering method was a complete linkage one, also called farthest neighbour. The cut off 

for the number of clusters I selected was an inconsistency coefficient no greater than 1.95. 

That resulted in 12 clusters.  

Time/frequency group differences. I defined the mapping area by considering a -

500 millisecond baseline and a limit of 1000 milliseconds after the presented image-sound. 

The frequencies analysed are all between 3 Hz and 35 Hz. All ERPS and ITC reacted by 

electrodes together at the same time, making a selection. The units shown in the graphic 

are decibels (dB). Results here show a difference in oscillatory response when grouped by 

different semantic distribution clusters. I consider 4 groups of electrodes named after the 

region of the brain region where they were placed (e.g., occipital, right central, left central, 

and others).  

 The right central electrodes are the first group for analysis. The names of these 

electrodes are E106, E107, E113, and E112. As seen in Figure 3, the event-related 

response seems to have a narrow difference between the two conditions. One point was the 
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ERP difference is particularly salient is at the P3a component. Therefore, at first glance, 

they do not support the hypothesis of different physiological responses conditioned to 

distributional semantic modelling. Next, for electrode E107, the ERSP results for the two 

groups shows a much bigger difference in terms of oscillations, between 7 Hz and 13 Hz 

from 300 ms onwards, suggesting an increase in alpha activity in the ‘Rocket’ condition 

over the ‘Button’ condition. A smaller difference was still noticeable, which shows an 

increase in theta activity from the 400 ms onwards. 

Figure 3. Top. Central electrodes ERP response divided into two conditions previously 

explained, ‘Button’ and ‘Rocket’ for all 73 participants. Bottom ERSP for electrode E107 

compared into two conditions.  
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The next four electrodes are on the left hemisphere. The electrode names are E7, E13, 

E31, and E32. The visual results of the event-related potential component of this group 

start later and with a positive shift. I believe this component forms part of the P300 

(Polich, 2007). The ERSP in Figure 4, using E7 as an example, shows from 300 ms 

onwards more alpha activity (7 Hz - 11 Hz) in the ‘Rocket’ group than in the ‘Buttons’ 

group. This is consistent with the ‘Rocket’ group taking the upper side of the ERP 

response graph. These results are in line with the results from the right central electrodes in 

the previous figure.    
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figure 4. Top. Left hemisphere central electrodes ERP response divided into two conditions 

previously explained, ‘Button’ and ‘Rocket’ for all 73 participants. Bottom ERSP for electrode 

E7 compared into two conditions considering all participants.  
 

The occipital electrodes, named E53, E60, E86, and E87, show a difference between 

500 ms and 700 ms. For the ERSP analysis the electrode E87 - here used as an example 

but observable in the other electrodes as well - shows a decrease in alpha oscillations (9 

Hz) in the ‘Rocket’ group whereas it shows a decrease in low beta (16 Hz) oscillations 

in the ‘Button’ group. 



 
SEMANTIC MEMORY REPRESENTATION  23 
 

 

figure 5 Top. Occipital electrodes ERP response divided into two conditions previously 

explained, ‘Button’ and ‘Rocket’ for all 73 participants. Bottom. ERSP for electrode E80 

compared between two conditions. 

 

Although all previous results should be interpreted with care and as a visual 

exploration since they have not yet been tested (Diepen & Mazaheri, 2018, p. 6), it is 

important to stress that these findings are consistent with Klimesch’s (1999) findings in 

which alpha and theta oscillations decrease and increase, respectively, after a memory-

triggering event. 
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Representational Similarity Analysis Results 

Here, I show the extent to which the brain-data representational similarity matrix 

from the brain fits the representational similarity matrix built from the images cosine 

comparison matrix. I performed all computations considering the period between 0 and 

500 ms after the images-sound semantic representations. When considering from the event 

onset (0) until one second the first second after the mean correlation improved for all 

electrodes considered together. There are significant results for the clustered data in central 

electrodes for both hemispheres after correcting for multiple comparisons (random effect, 

p < 0.015). When considering the occipital area, I found that the results were not 

significant. These results show that for central electrodes that the semantic space of image-

sound representation has a significant effect on the representation of brain data. The 

coming overview of effects is shown in Figures 6, 7, 8, and 9.  

 

figure 6. The mean correlation between the semantic similarity matrix 

and the representational similarity matrix is .16 (SD = .22, random 

effect, p <  .05).  
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figure 7. Among the right central electrodes, the mean correlation 

between the semantic similarity matrix and the representational 

similarity matrix is .25 (SD = .07; random effect, p < .015). 

 

 

figure 8. The left central electrodes have a mean correlation between the 

semantic similarity matrix and the representational similarity matrix of 

.21 (SD = .07; random effect, p < .015).  

 

 

figure 9. Occipital electrodes have a mean correlation between the 

semantic similarity matrix and the representational similarity matrix of 

.08 (SD = .05; random effect, ns). 
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Discussion 

I found consistent evidence showing a relationship between the representations of 

the distributional semantic model and the physiological representations of the brain 

response. With all electrodes considered in a grand average, the correlation proves 

significant at the 5% level in a multiple comparison random test. The relationship was 

stronger for central electrodes at a 1.5% significance level and was smaller and not 

significant for occipital electrodes. 

The alpha and beta suppression registered in the ERSP maps is in line with the 

findings of previous studies on attentional levels and memory loads (Shahin, Picton, & 

Miller, 2009; Bastiaansen, van der Linden, Ter Keur, Dijkstra, & Hagoort, 2005; 

Klimesch, 1999). This finding is also in line with findings on memory search or memory 

scanning demands - which also show alpha suppression (Kaufman, Curtis, Wang, & 

Williamson, 1992; Rojas, Teale Sheeder, & Reite, 2000). It would be interesting for future 

research to prove whether more frequent – or easy to remember – semantic clusters have 

less intense alpha or theta frequency suppression after they been presented. It could be that 

less frequent semantic representations elicit more alpha power decrease (memory effort) 

and more theta power increase (encoding effort). This could have implications for memory 

tests.  

A possible interpretation for these results is that certain brain regions consistently 

activate when the participants recall different semantic groups. In other words, there could 

be an interconnection between the electrical response and the theoretical semantic space 

position in the overall picture of the brain. This is in line with previous findings by Huth et 

al., which establish representations of meaning at the level of the word, where his team 

was able to construct complex maps across the association cortex (Huth, de Heer, 

Griffiths, Theunissen, & Gallant, 2016). A particularity of this dissertation is that the 

representations of meaning were presented to the participants in the form of image-sounds. 
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In Huth’s study, the participants heard a story. This similarity could mean that 

representations of meaning are accessed in the same way, independently of the modality of 

the study. 

According to Huth et al., the medial prefrontal cortex is predicted to activate when 

retrieving semantic memories associated with mental, social and/or temporal heard words. 

This results points towards signalling that the brain electrical response is related to the 

visual-auditory semantic representation a participant is exposed to. Therefore, this study 

along with previous semantic mapping efforts, open up the possibility to try identify 

localized memory disorders by recalling different semantic groups, while sensing with 

EEG. For example, logogenic primary aphasia (a variant of AD) normally shows a 

different brain response - as measured by a fMRI - on the right working memory system 

(Witwell et al., 2014). Consequently, we could test differences in elicited electrical 

responses by exposing patients to targeted semantic groups (e.g. mental, social, temporal). 

Working with secondary data presents a new set of challenges. Even if most steps 

in data processing are explained, in some instances assumptions are still required. The 

most important assumption I made was on how the images were distributed – given that 

EEG data came sorted by type of response (e.g. NewC short, OldC short, etc.). In the end, 

this assumption proved to be correct since all correct or incorrect responses were found on 

the 19.710 trials assumed distribution. Another challenge I found working with secondary 

data was the fact that epochs came arranged in fix sorting. This meant I could not develop 

an artefact removal process neither a filtering process – thus being unable to study 

frequencies over 35 Hz. 

The non-significant results for the occipital electrodes can be accounted for in 

previous findings. Other researchers have found that the occipital area plays a role in 

visual selective attention that is captured by the occipital electrodes (Heinze, Mangun, 

Burchert, Hinrichs, Scholz, Munte, Gos, et al., 1994; Cabeza & Nyberg, 2000). The ERP 
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response in figure 6 seems suggest that the visual role of the occipital electrodes is more 

prominent than the semantic memory role when compared both together. We can expect 

no difference between semantic representations. When images are presented regardless of 

their semantic content, they are visually attended in the same way by this area. 

The virtue of grand averages is that when the sample is sufficiently big, different 

noise components of the signal start counteracting with each other and add up to a 0 mean 

if we assume normality in the noise distribution. A downside to this approach is in the fact 

that it is harder to observe for individual variabilities across participants. Also in Huth et 

al.’s (2016) recent work, he found consistency in the mapping across individuals. 

Multivariate pattern analysis (MVP) in cognitive neuroscience should be treated 

carefully. Neural decoding, as done by non-linear mathematical models, assumes that if 

information can be decoded from patterns of neural activity, then those patterns present 

enough evidence (e.g., King & Dehane, 2014). Ritchie, Kaplan and Klein (2017) critique 

this approach from a philosophical standpoint. They claim that MVPA might be too 

powerful: “It allows for information that is in the brain but could not be exploited by the 

brain itself” (p. 13). As a recommendation, they stress the need to blend the decoding 

results with behavioural and psychological models of human conduct. Bridging the 

existing technique and knowledge in MVPA, AD and memory theoretical models could 

prove helpful to improving all three matters simultaneously, although it is critical to find 

and use connection points correctly. 

Future research should continue to build a bridge between atypical AD phenotypes 

by distinguishing semantic distribution patterns and establishing their relation between 

EEG markers and cognitive decline.  
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